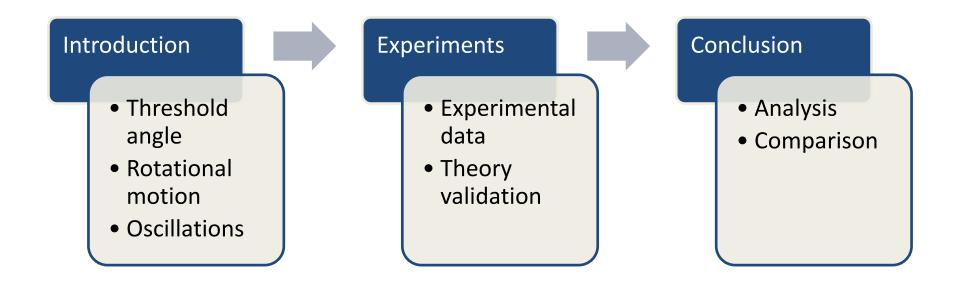
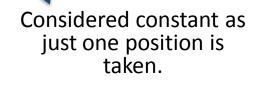
Team of Brazil

Problem 09 Magnet and coin

reporter:

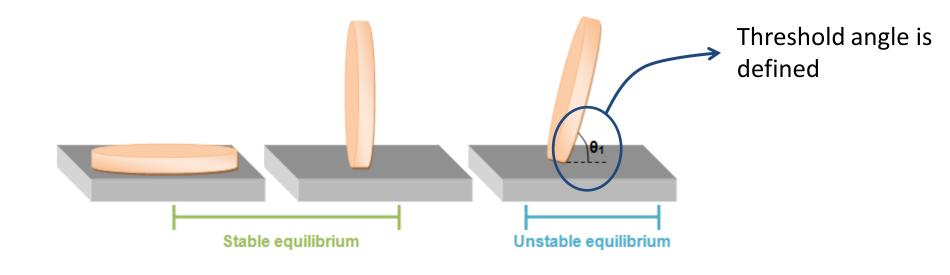

Bárbara Cruvinel Santiago

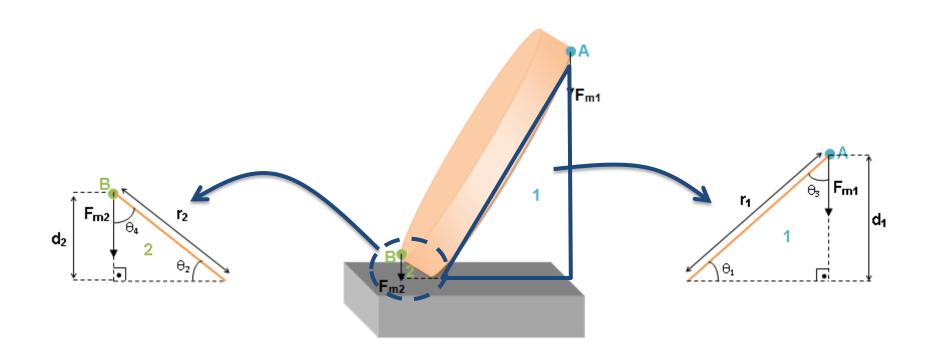
Problem 09 Magnet and coin


Place a coin vertically on a magnet. Incline the coin relative to the magnet and then release it. The coin may fall down onto the magnet or revert to its vertical position. Study and explain the coin's motion.

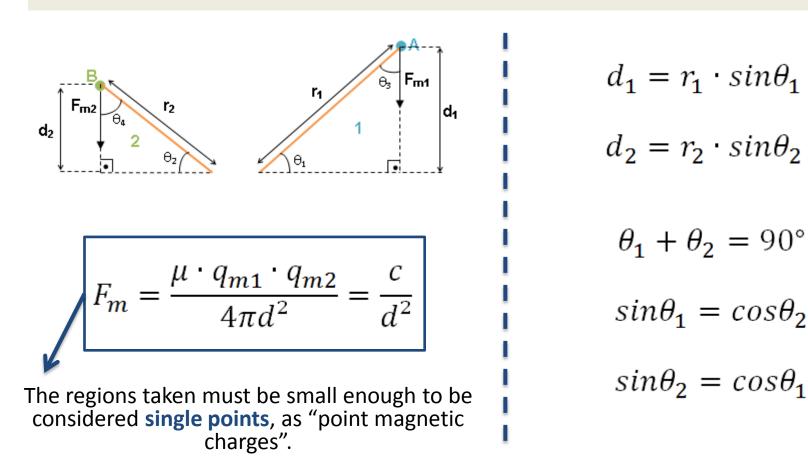
Contents

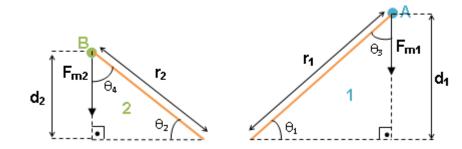
Magnetization of the coin


- Magnetization is the main cause of the phenomenon.
- Difficult to predict mathematically for ferromagnetic material.
- Equivalent to "magnetic charges" for simplification.


$$p = q_m \cdot x$$

Acts as kind of an average for the magnetic momentum


Threshold angle


Threshold angle

Threshold angle

Threshold angle

• In the equilibrium:

$$\tau_1 = \tau_2$$

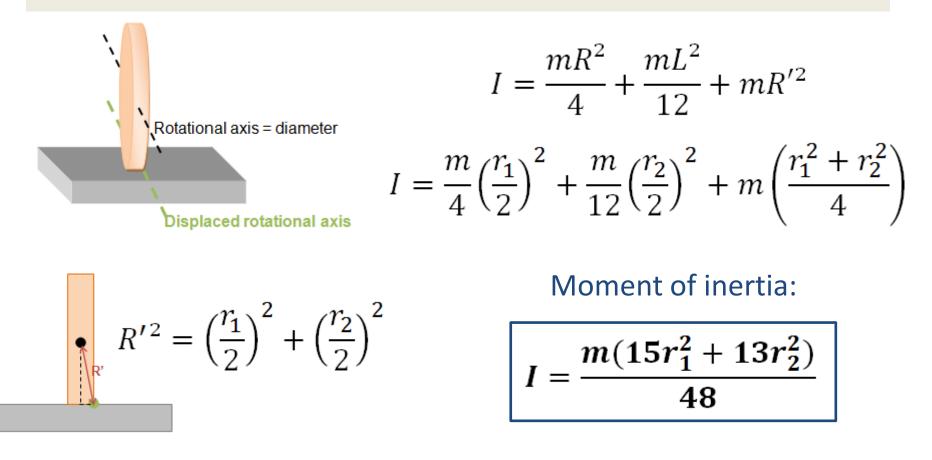
$$F_{m1} \cdot r_1 \cdot \sin\theta_3 = F_{m2} \cdot r_2 \cdot \sin\theta_4$$
$$\frac{c}{(r_1 \cdot \sin\theta_1)^2} \cdot r_1 \cdot \cos\theta_1 = \frac{c}{(r_2 \cdot \sin\theta_2)^2} \cdot r_2 \cdot \cos\theta_2$$

$$\tan^3\theta_1 = \frac{r_2}{r_1}$$

Threshold angle

 $\tan^3\theta_1 < r_2/r_1$

• The coin falls over the magnet.


• The coin is in instable equilibrium.

 $\tan^3\theta_1 = r_2/r_1$

$$\tan^3\theta_1 > r_2/r_1$$

- The coin comes back to the original position.
- Magnetic properties:
 - Condition for effect occurrence.
 - Have no influence in the threshold angle determination.
- Weight: can be neglected as it is going to be showed.

Rotational motion

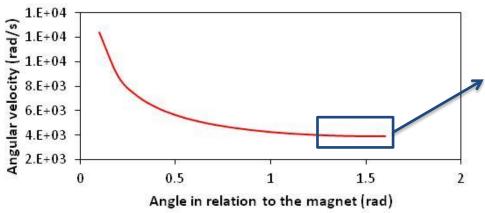
Rotational motion

$$\tau = I \cdot \alpha$$

• Angular acceleration:

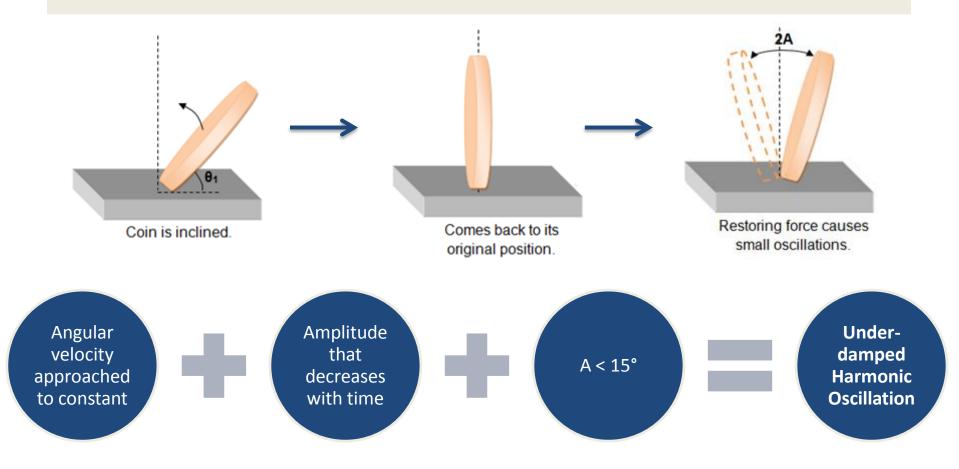
$$\alpha = \frac{48 \cdot c \cdot \cos\theta_1}{m \cdot r_1(15r_1^2 + 13r_2^2) \cdot \sin^2\theta_1}$$

Dependent on the
 inclination angle and on the magnetic properties.


$$\alpha = \frac{d\omega}{dt} = \frac{d\omega}{d\theta_1} \cdot \frac{d\theta_1}{dt} = \frac{d\omega}{d\theta_1} \cdot \omega$$
$$\int_{-\theta}^{\frac{\pi}{2}} \alpha \cdot d\theta_1 = \int_0^{\omega} \omega \cdot d\omega$$
$$\int_{-\theta}^{\frac{\pi}{2}} \alpha \cdot d\theta_1 = \int_0^{\omega} \omega \cdot d\omega$$

Team of Brazil: Bárbara Santiago, Guilherme Moreira, Ibraim Rebouças, João Gabriel Faria and Liara Guinsberg Reporter: **Bárbara Cruvinel Santiago**

Rotational motion

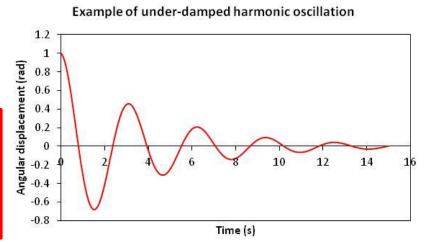

$$\omega = \sqrt{-2 \cdot \frac{48 \cdot c}{m \cdot r_1(15r_1^2 + 13r_2^2) \cdot sin\theta_1}}$$

Coin's angular velocity in function of θ_1

Angular velocity approximately constant near the normal line to the magnet.

Oscillations

Oscillations


• Dissipative force of type –bv.

$$m\frac{d^2x}{dt} + b\frac{dx}{dt} + kx = 0$$

$$\omega_0^2 = \frac{k}{m} \qquad \gamma = \frac{b}{m}$$

However, magnetic force does not vary linearly and so does the damping. Hence, the period varies. So, that's just a first approximation!

$$\omega = \sqrt{\omega_0^2 - \left(\frac{\gamma}{2}\right)^2}$$
$$x = Ae^{-(\gamma/2)t} \cdot \cos(\omega t + \omega)$$

Team of Brazil: Bárbara Santiago, Guilherme Moreira, Ibraim Rebouças, João Gabriel Faria and Liara Guinsberg Reporter: **Bárbara Cruvinel Santiago**

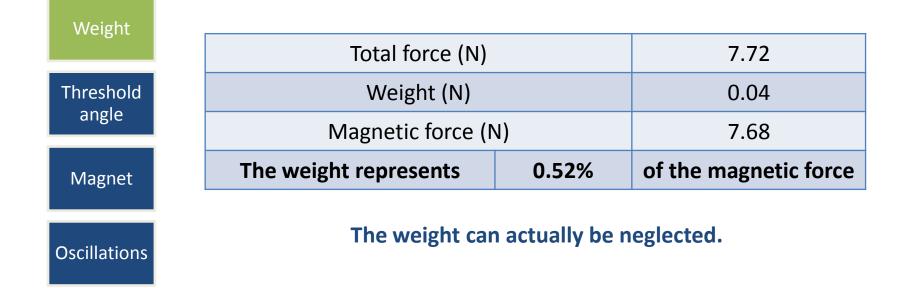
Bad Saulgau, $20^{th} - 29^{th}$ July, 2012

Eddy currents: source of dissipative force

Variation magnetic		Induction of electrical currents	Dissipative force generated		
		🛩 Case of	our experiments		
$\boldsymbol{\Phi} = \boldsymbol{B}\boldsymbol{S}\cdot\boldsymbol{cos\alpha}$		1 st case:	2 nd case:		
A≈5°		$\theta_1 = \alpha$	$\theta_1 = 90^\circ - \alpha$		
	A	$\Phi = BS \cdot cos\theta_1$	$\Phi = BS \cdot sin\theta_1$		
θ1		$\Delta \Phi_1 = BS \cdot \Delta cos\theta_1$	$\Delta \Phi_2 = BS \cdot \Delta sin\theta_1$		
	θ1 α	$\Delta \boldsymbol{\Phi}_1 = \boldsymbol{0}.\boldsymbol{087} \cdot \boldsymbol{BS}$	$\Delta \boldsymbol{\Phi}_2 = -0.004 \cdot BS$		
1 st case: on the poles	2 nd case: on the sides		rrents have their maximum he position on the magnet.		

Material

- 1. Magnets
- 2. Real coins
- 3. Steel coins
- 4. Protractor (±0,5°)
- 5. Acrylic ruler
- Iron filings
- White paper
- Dynamometer (±0.05N)
- Support for the dynamometer
- Camera


Experimental description

- **Experiment 1:** show that the weight is negligible in comparison to the magnetic force.
- **Experiment 2:** threshold angle analysis.
- Experiment 3: magnet analysis.
- **Experiment 4:** oscillation analysis.

Experiment 1: weight analysis

Maight			Force (N)
Weight	0	1 st	7.9
Threshold		2 nd	7.7
angle		3 rd	7.6
Magnet		4 th	7.8
		5 th	7.6
Oscillations		Average	7.72
		Standard Deviation	0.13

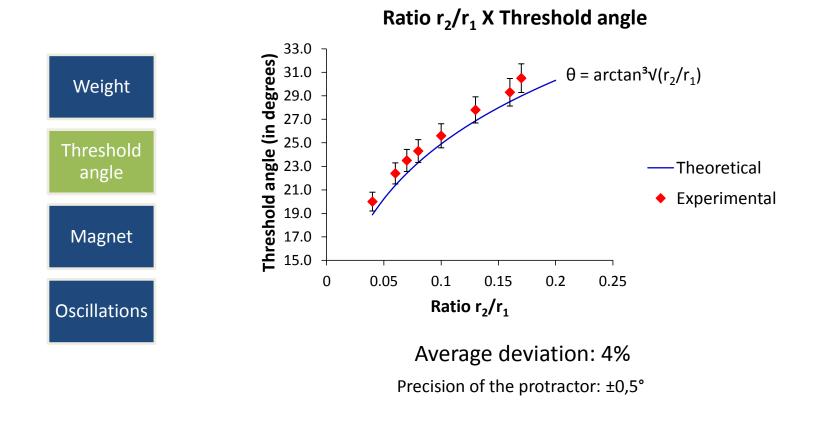
Experiment 1: weight analysis

Weight

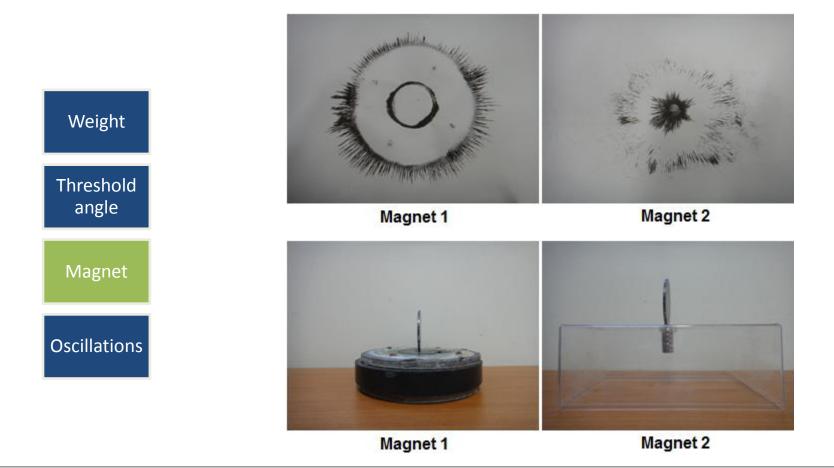
Threshold

angle

Magnet

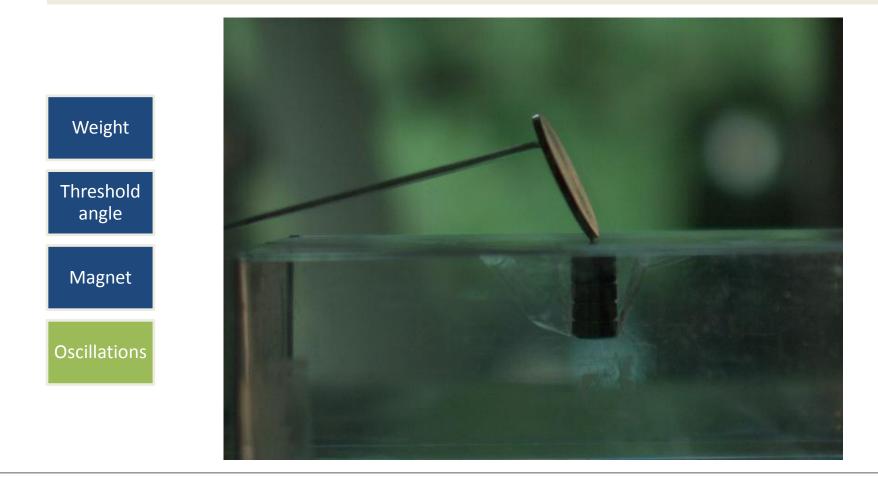

Oscillations

Experiment 2: threshold angle analysis


- 8 coins are used.
- They are inclined 1 by 1 degree.
- This is repeated 10 times for each coin.
- The points are averages.

Experiment 2: threshold angle analysis

Experiment 3: different magnets



Bad Saulgau, 20th – 29th July, 2012

Experiment 3: different magnets

	Threshold angle in degrees					
		Magnet 1	Magnet 2			
	1 st	26	30			
Weight	2 nd	25	26			
	3 rd	24	27			
Thursday	4 th	27	26			
Threshold angle	5 th	26	28			
	6 th	25	27			
Magnat	7 th	25	25			
Magnet	8 th	25	24			
	9 th	26	26			
Oscillations	10 th	27	24			
	Average	25.6	26.3			
	Standard deviation	1.0	1.8			
The angles are the same considering the standard deviation						

Experiment 4: oscillation analysis

Bad Saulgau, 20th – 29th July, 2012

Experiment 4: oscillation analysis

15 **Resembles an under-damped** Angular displacement (degrees) harmonic oscillation, but the 10 period varies. Weight 5 Threshold • r1 = 30 mm 0 •0.02 angle 0.04 0.12 0.1 ◆ r1 = 35 mm -5 Magnet -10 -15 Time (s) Oscillations Evidence of Coin with Greater damping eddy currents larger area

Angular displacement x Time

Team of Brazil: Bárbara Santiago, Guilherme Moreira, Ibraim Rebouças, João Gabriel Faria and Liara Guinsberg Reporter: **Bárbara Cruvinel Santiago**

Bad Saulgau, 20th – 29th July, 2012 **25**

Conclusion

- Magnetic properties are important for the motion itself and are the initial condition for the effect occurrence.
- Threshold angle is dependent only on the coins dimensions (exp. 2/3).
- The fall or reverting motion is due to the torque of the magnetic force.
- Oscillations resembles an under-damped harmonic oscillations but the period varies (exp. 4).
- Evidences of dissipation by eddy currents (exp. 4).

References

- 1. http://www.bcb.gov.br/?MOEDAFAM2
- 2. http://www.infomet.com.br/acos-e-ligas-conteudoler.php?cod_tema=9&cod_secao=10&cod_assunto=81&cod_conteu do=123

• 3.

http://www.usmint.gov/mint programs/circulatingCoins/index.cfm ?action=CircPenny

- 4. http://geophysics.ou.edu/solid_earth/notes/mag_basic/mag_basic. html
- 5. PRÁSS, Prof. Alberto Ricardo. Oscilações: Movimento Harmônico • Simples – MHS. Física.net

Thank you!

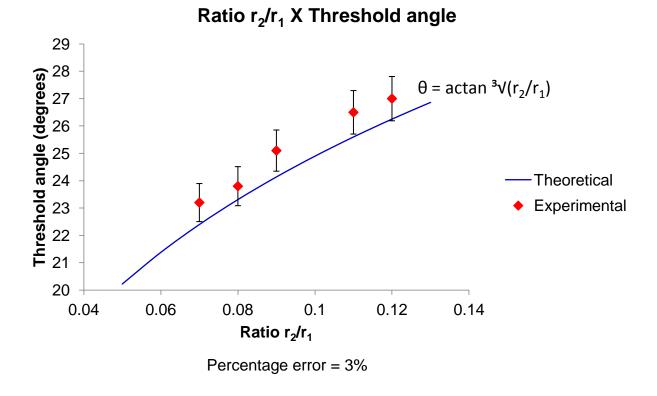
Dynamometer calibration

 The dynamometer was calibrated with PET bottle full of water, with exact 1 kg, measured with a scale of precision of 0.1 g. The maximum mark of the dynamometer is 10N.

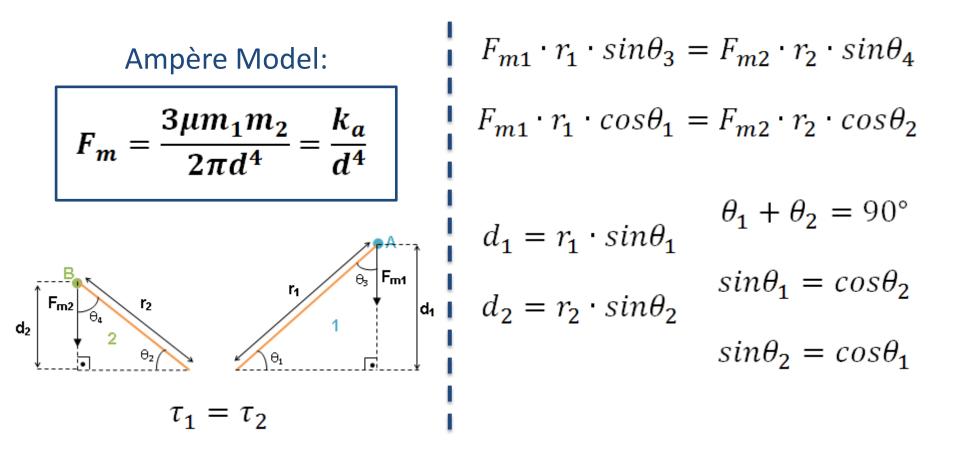
Real coin's table

Technical characteristics of the coin							
Value (R\$)	Diameter (mm)	Thickness (mm)	Mass (g)	Material			
0.01	17	1.65	2.43	Steel covered with copper			
0.05	22	1.65	4.10	Steel covered with copper			
0.10	20	2.23	4.80	Steel covered with bronze			
0.25	25	2.25	7.55	Steel covered with bronze			
0.50	23	2.85	6.80	Stainless steel			
1.00	27	1.95	7.00	Stainless steel (core) a steel covered with bronze (ring)			

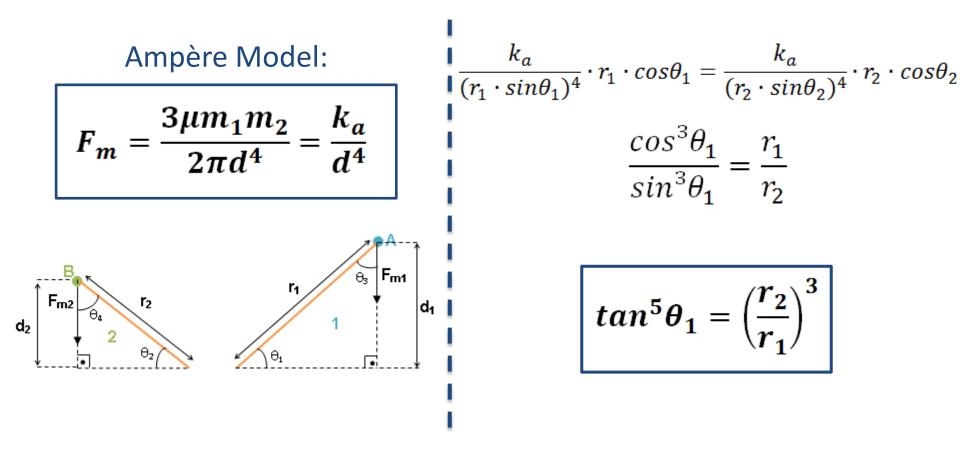
Table for experiment 2

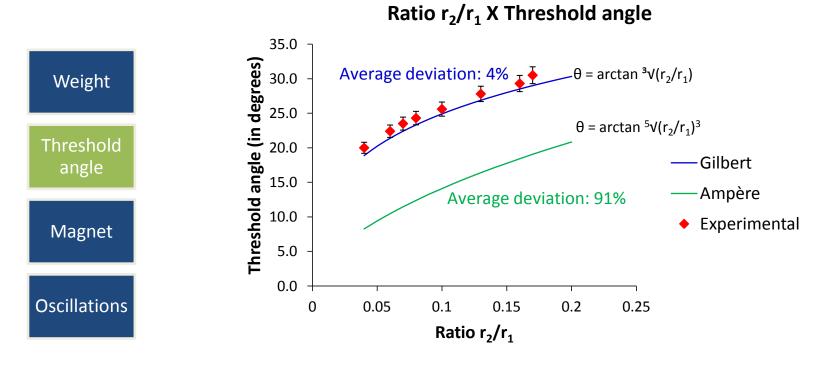

Threshold angle (in degrees)								
Coins	0.16	0.08	0.04	0.07	0.1	0.13	0.17	0.06
1	33	28	21	25	26	25	28	23
2	31	25	22	24	25	25	32	25
3	30	25	23	22	24	24	34	21
4	29	24	20	23	27	30	31	23
5	28	23	19	24	26	29	29	22
6	28	24	18	24	25	28	33	21
7	29	23	19	23	25	33	30	23
8	28	24	19	23	25	31	29	22
9	28	24	20	23	26	27	29	21
10	29	23	19	24	27	26	30	23
Average	29.3	24.3	20	23.5	25.6	27.8	30.5	22.4
Theory	28.5	23.3	18.9	22.4	24.9	26.9	29.0	21.4
Standard deviation	1.64	1.49	1.56	0.85	0.97	2.94	1.96	1.26
Percentage error	3%	4%	6%	5%	3%	3%	5%	5%
Average Percentage Error								4%

Experiment 2 for real coins - table


Threshold angle (in degrees)						
Coins	R\$ 1.00	R\$ 0.50	R\$ 0.25	R\$ 0.10	R\$ 0.05	
1	25	26	25	25	25	
2	26	27	26	26	24	
3	23	25	25	29	23	
4	22	27	24	25	23	
5	24	28	26	26	25	
6	22	29	24	27	24	
7	24	27	25	27	23	
8	23	28	27	25	25	
9	22	27	24	27	23	
10	21	26	25	28	23	
Average	23.2	27	25.1	26.5	23.8	
Theory	22.6	26.5	24.1	25.7	22.9	
Standard deviation	1.55	1.15	0.99	1.35	0.92	
Percentage error	3%	2%	4%	3%	4%	
Average Perc. Error					3%	

Team of Brazil: Bárbara Santiago, Guilherme Moreira, Ibraim Rebouças, João Gabriel Faria and Liara Guinsberg Reporter: **Bárbara Cruvinel Santiago** Bad Saulgau, 20th – 29th July, 2012


Experiment 2 for real coins - graphic


Threshold angle: Ampère model consideration

Threshold angle: Ampère model consideration

Experiment 2: threshold angle analysis

Precision of the protractor: ±0,5°

Team of Brazil: Bárbara Santiago, Guilherme Moreira, Ibraim Rebouças, João Gabriel Faria and Liara Guinsberg Reporter: **Bárbara Cruvinel Santiago** Bad Saulgau, 20th – 29th July, 2012

Coin's material

Used coins: steel (iron + carbon).

- Ferromagnetic: existence condition for the phenomenon.
 - Iron, cobalt, nickel and gadolinium;
 - Magnetic domains are oriented in the direction of the external field.
- Certain coins cannot be tested, like dollar coins (zinc+ copper).

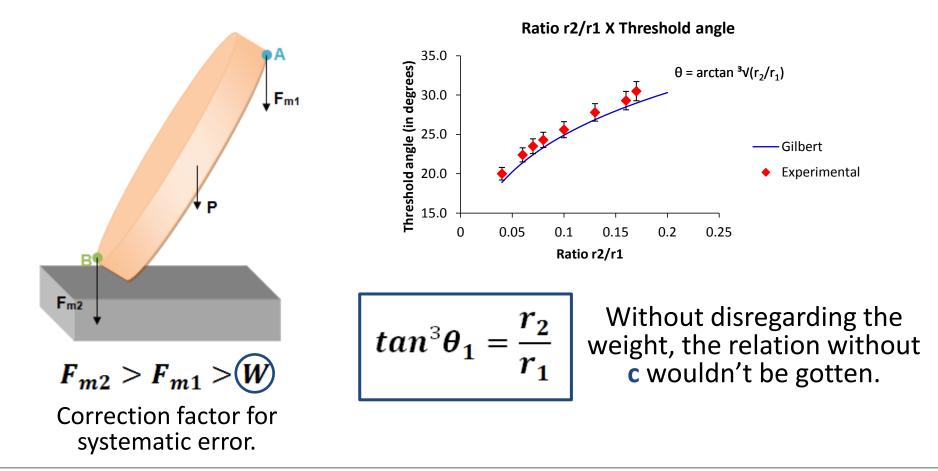
37

d

Magnetic properties

$$p = q_m \cdot d$$

$$M = \frac{p}{V}$$


$$B = \frac{\mu}{2}M$$

$$q_m = 2\frac{V}{\mu d} \cdot B$$

$$q_m = \int \int \int \int 2\frac{V}{\mu \cdot x \cdot \sin\theta_1} \cdot B \cdot dB \cdot dV \cdot dx \cdot d\theta_1$$

$$q_m = \frac{B^2 V^2 \cdot \log(x) \cdot \left[\log\left(\sin\left(\frac{\theta_1}{2}\right)\right) - \log\left(\cos\left(\frac{\theta_1}{2}\right)\right)\right]}{2\mu}$$

Contribution of the weight for the torque

