String of beads

A long string of beads is released from a beaker by pulling a sufficiently long part of the chain over the edge of the beaker.
Due to gravity the speed of the string increases. At a certain moment the string no longer touches the edge of the beaker. Investigate and explain the phenomenon.

Vyacheslav Matyunin, Russia

Beads for the fountain

The fountain is created only with beads, which are separated from each other.

Scheme of the experiment

Velocity of beads vs. time

Video 240 fps

35 meters of beads fall from the height 8 m .

What happens when we change the diameter of the vessel

$D=8 \mathrm{~cm}$
$D=12 \mathrm{~cm}$
$D=20 \mathrm{~cm}$

Results of the experiment

Experiment with an electric drill

Video 240 fps: the record height and the accident

45 meters of beads flow at the velocity $16 \mathrm{~m} / \mathrm{s}$.

Results of the experiment with an electric drill

Maximum fountain height vs. marching velocity

The problem of the rope

$$
\begin{gathered}
F=\frac{d p}{d t}=\frac{d m}{d t} \cdot v=\rho v^{2} \quad N=F v=\rho v^{3} \\
\frac{d}{d t}\left(\frac{m v^{2}}{2}\right)=\frac{d m}{d t} \cdot \frac{v^{2}}{2}=\frac{\rho v^{3}}{2}
\end{gathered}
$$

Half the power is converted into heat (or go through other channels)

The problem of the rope (continued)

The rope is accelerated to constant speed, and then the block disappears.
Whether the band of the rope stand still?

The balance of the arc of rope

Kinematics of the

 growing fountain- If the fountain grows with the velocity u, then the ascending rope has an additional velocity $2 u$.
- And if the ascending rope has an additional velocity $2 u$, then the fountain grows with the velocity u.
- What is the cause? What is the effect?

A model for the fountain growth

1st stage:
The bead is at rest

2nd stage:
The thread is
elastically stretched

3rd stage:
The bead moves

\square

Why the fountain grows?

Questions
we have no answer

- What determines the growth rate of the fountain?
- What determines the maximum height of the fountain?

Transverse waves

Transverse waves

Time between frames $=1 / 240 \mathrm{~s}$.
Velocity of beads $=7 \mathrm{~m} / \mathrm{s}$. Velocity of the wave $=14 \mathrm{~m} / \mathrm{s}$.

Summary

- Beads to create a fountain
- Experiment with falling beads
- Experiment with a drill (cool!)
- Balance of a moving rope
- Kinematics of the growing fountain
- Fountain growth is caused by elasticity of the thread (hypothesis)
- Transverse waves

Bibliography

- Calkin M. G., March R. H. (1989) "The dynamics of a falling chain". American Journal of Physics, 57, 154-158
- Гельфгат И. (1993) "Сколько веревочке ни виться". Квант, № 1, 55-56.

Acceleration of the beads

When the beads move ds down, the work of gravity is:

$$
d A=\rho g h \cdot d s=\rho g h \cdot v d t
$$

The increment of the kinetic energy of the beads:

$$
d E_{1}=\rho h \cdot d\left(v^{2} / 2\right)=\rho h v \cdot d v
$$

Energy expended in accelerating new beads:

$$
d E_{2}=\rho v^{3} d t
$$

The balance of energy:

$$
g h \cdot d t=h \cdot d v+v^{2} d t
$$

The solution:

$$
v(t)=\sqrt{g h} \cdot \operatorname{th}\left(\frac{t}{\sqrt{h / g}}\right)
$$

Computer simulation

"Interactive physics" program. String of beads is drawn down at constant velocity. Gravity is turned off.

Centrifugal acceleration

$$
\begin{aligned}
& v \sim 5 \mathrm{~m} / \mathrm{s} \quad R \sim 0.05 \mathrm{~m} \\
& a=v^{2} / R \sim 500 \mathrm{~m} / \mathrm{s}^{2}=50 \mathrm{~g}
\end{aligned}
$$

