15.

Frustrating golf ball

Matej Badin

Problem

- It often happens that a golf ball escapes from the hole an instant after it has been putted into it. Explain this phenomenon and investigate the conditions under which it can be observed.

Content

- Definitions
- Analysis of the motion
- Rolling, flight, collisions
- Simulation
- Experiment
- Conclusion

Our definitions

- Golf ball
- USGA norm - diameter not less than 4.267 cm
- Our ball - d=4.27 cm
- Hole - cylinder
- Diameter $=10.8 \mathrm{~cm}$
- Depth = 10.2cm

Putting green

Structure of carpet

Our "green"

Analysis of the motion

Flight

Rolling

Rolling

$F_{G} \quad$ - Gravity force
$F_{N} \quad$ - Normal force
$F_{F} \quad$ - Friction force
F_{A} - Air drag force
$\tau_{R R}-\underset{\text { Rolling resistance }}{\text { torque }}$
$F_{F F} \quad$ - Rolling resistance force

Another resistance in rolling

- Resistance torque to rotation around perpendicular axis to horizontal caused by deformation of the surface or the ball

Ball "cap" effect

Flight

$F_{G} \quad$ - Gravity force
$F_{A} \quad$ - Drag force
$\tau_{A R} \quad$ - Drag torque

Magnus-Robins effect

- Force caused by pressure difference on forward and backward moving side of spinning object.

Collisions

Collision

Translation motion and rotation
Normal force and friction

While slipping

$$
F_{F}=f F_{N}
$$

If not

$$
F_{F}=0
$$

Slipping during collision

Direction of friction force is opposite to the direction of a contact point

During small time Δt

$$
\begin{aligned}
& f^{2} F_{N}^{2}=F_{F X}^{2}+F_{F Y}^{2} \\
& \frac{F_{F X}}{F_{F Y}}=\frac{v_{x}-\omega_{y} R}{v_{y}+\omega_{x} R}
\end{aligned}
$$

We don't know how the normal force changes in time.

Used trick - simulation

- Use of Newton's laws
- Simulation over small increments of the momentum Δp
- Calculation of $\Delta p_{x}, \Delta p_{y}$ from :

$$
\begin{aligned}
& f^{2} F_{N}^{2}=F_{F X}^{2}+F_{F Y}^{2} \\
& \frac{F_{F X}}{F_{F Y}}=\frac{v_{x}-\omega_{y} R}{v_{y}+\omega_{x} R}
\end{aligned} \quad \Rightarrow \frac{f^{2} \Delta p^{2}=\Delta p_{x}^{2}+\Delta p_{y}^{2}}{\Delta p_{y}}=\frac{\Delta p_{x}}{v_{y}+\omega_{x} R}
$$

Simulation

ω_{x}
ω_{y}
$\Longleftrightarrow \omega_{x}-\frac{F_{F Y}}{I} R \Delta t=\omega_{x}-\frac{R}{I} \Delta p_{y}$
ω_{z}
$\longmapsto \omega_{z}-\frac{M_{\left(F_{N}\right)}}{I} \Delta t$ (Ball cap effect)

Summary of coefficients

Rolling

- Rolling resistance arm
- Shape coefficient
- Contact area radius
- Frictions coefficients
- Moment of inertia
- Mass
- Radius

Fly

- Shape coefficients

Collisions

- Friction coefficient
- Coefficient of restitution on the edge (in dependence on angle)

Summary of effects

Rolling

- Rolling resistance
\checkmark Air resistance
- Air restance torque
- Ball cap effect (deformation of ball or deformation of surface)

Fly
Collisions

- Sliding
- Ball cap effect

Simulation

- Used described theory
- In collisions we rotated the frame of the reference

Experiments

- Two surfaces

Carpet \& Wood

Smooth and smooth edges Similar to grass and rough edges

Wood simulation results

-54mm

Shift 0 mm
mis

First experimental setup

Highspeed camera

Rails -
stabilisation of the ball

Inclined plane

- regulation of the speed

Second experimental setup

Place of highspeed

camera

Theory vs. experiment

- Experiment IN
- Experiment OUT

Initial velocity [mss]

Comparision - Escape

No shift Velocity - 2,2 m/s

wood_escape.exe

Comparision - Jump

No shift
 Velocity - $2,0 \mathrm{~m} / \mathrm{s}$

Comparision - Too much

No shift
Velocity - 4,0 m/s

Comparision - Turn around

Shift - 35 mm Velocity - $\mathbf{1 , 0} \mathbf{~ m} / \mathrm{s}$

Carpet simulation

Carpet simulation result

Shift [mm]54mm

Rolling resistance

0 mm

54 mm
$0,01 \mathrm{~m} / \mathrm{s}$

Initial velocity [m/s]

Island or face?

Shift-3 mm $\quad 0 \mathrm{~mm} \quad 3 \mathrm{~mm}$

Carpet - Escape

No shift

 Velocity - $1,94 \mathrm{~m} / \mathrm{s}$
Influence of diameter of the hole

Velocity of the ball [dm/s]

Conclusion

- The most important parameters and effects are:
- Rotation
- Slipping during collision
- Coefficient of restitution on the edge
- Coefficient of restitution in the hole

Conclusion

- We developed the model of the motion and collisions
- We theoretically predicted the path of the ball
- Prediction correlates with experiment
- We explained the most important parameters under which can be phenomenon observable

THANK YOU FOR YOUR ATTENTION

Ball cap effect

We assume that normal force is evenly distributed to a contact area.
Torque acts on ball in z-axis:

$$
\tau=\frac{f F_{N}}{2 \pi R\left(R-\sqrt{R^{2}-\rho^{2}}\right)} \int_{0}^{R-\sqrt{R^{2}-\rho^{2}}} 2 \pi{\sqrt{\left(R^{2}-(R-x)^{2}\right)}}^{2} d x
$$

$$
\frac{2}{3} R^{3}-\rho^{2} \sqrt{R^{2}-\rho^{2}} \quad \text { surface }
$$

$$
R^{2}-R \sqrt{R^{2}-\rho^{2}}
$$

Deformation of the ball

We assume that normal force is evenly distributed to a contact area.
Torque acts on ball in z-axis:

$$
\tau=\frac{f F_{N}}{\pi r_{\text {contact }}^{2}} \int_{0}^{r_{\text {contact }}} 2 \pi x^{2} d x
$$

$$
\tau=\frac{2}{3} f F_{N} r_{\text {contact }}
$$

Measurement of coefficients

Angular velocity

Magnus effect

Detaily explained and investigated in (also with other forces) :
Borg, Karl et al. " Forces on a spinning sphere moving in a rarefied gas." Physics of Fluids Volume 15, Number 3 (March 2003): 736-41

$$
\vec{F}=f(\vec{\omega} \times \vec{v})
$$

Effect is unobservable at this small range of velocities ($\mathrm{o}-5 \mathrm{~m} / \mathrm{s}$)
Just try to spin the ball and let it fall. There is no shift to the side.
Also calculated in : Barber "Golf Ball Flight Dynamics" Final project, Cornell University

Result $=$ The effect is relevant only in the motion with long trajectories.

Summary of coefficients

Carpet

- Rolling resistance arm - 0.0015 m
- Shape coefficient (Air drag) - 0.1
- Coefficient of restitution Ball with
- Carpet 0.4
- Hole bottom o. 8
- Hole walls, edges 0.55
- Friction coefficients - ball with
- Carpet 0.23
- Hole bottom 0.12
- Hole walls 0.1
- Hole edges o. 4
- Ball cap effect - contact radius ball on :

Carpet - 0.0004 m
Bottom -0.0001 m

