3.

String of beads

Michal Hledík

3. String of beads

A long string of beads is released from a beaker by pulling a sufficiently long part of the chain over the edge of the beaker.
Due to gravity the speed of the string increases. At a certain moment the string no longer touches the edge of the beaker.

Investigate and explain the phenomenon.

Content

1. Mechanism of levitation
2. Simulation
3. Investigating interesting aspects of the phenomenon

Simple 1D model

Imaginary pulley at the top, constant velocity

Analyzing tension in the string:
v. $F_{1}=v^{2} \sigma$
(momentum
needed to pull new beads)

$$
F_{2}=v^{2} \sigma+h \sigma g
$$

(to balance the gravity)

Simple 1D model

Rate of change of momentum:

$$
2 v^{2} \sigma=2 F_{2}-F_{P U L L E Y}
$$

Resulting $F_{\text {PULLEY }}$:

$$
F_{\text {PULLEY }}=2 h \sigma g
$$

What if there is no pulley?

What is the source of energy?

Gravity potential?
It would levitate in 1D model

Air drag effects? (Magnus effect...)
Works with heavier and smaller beads

Bending stiffness of thread

Thread - non-zero bending stiffness

 Small...Significant compared to mass of beads

Let's test it

Different initial setting

Big circles

 - small curvature
Curly

- large curvature

Big circles

- small curvature

Curly

- large curvature

More measurements, average height

How does it work?

- String is trying to straighten
- Reaction - normal force
- Extra momentum upwards
- Higher speed upwards

- Height of arch increases

Bending stiffness measurement

Known forces and radii
\rightarrow known torque
$\stackrel{\rightharpoonup}{F}$
Dependence of torque on angle

14
聠参
F
F
F

Mat

䟚

Result

Torque [Nm]

Developing a theory

- We know the important effect
- Analytic theory?
- Too complicated process
\rightarrow simulation

3D Simulation

Forces:

- Gravity
- Thread
- Straightening
- Damping

Simulation - straightening

- Keeping the length of thread constant \rightarrow relation of F_{1}, F_{2}
- Data from bending stiffness measurement \rightarrow torque (depending on angle)

$$
F_{2}=\frac{\tau}{\sin \alpha} \quad F_{1}=F_{2}\left(\frac{m r^{2}}{I} \sin ^{2} \alpha+1\right)
$$

Simulation - damping

Relative velocity according to adjacent bead
\rightarrow Force in opposite direction

Simulation input

- Geometrical properties of string and beaker
- Experimental data - bending stiffness
- Fitted coefficient of damping
- Initial distribution of beads - random
- Letting the string fall to the beaker
- Small random side velocity for instability

What if...?

- Very long string
- Influence of height over the floor
- Different strings/ropes
- Different beakers

Very long string

Height of the beaker over the floor

Tame [s]

Different strings

- Metal beads
- work
- Thread,
climbing rope
- do not work

Beaker high walls, small hole

Beaker

- low walls

Stable shape of the arch

- Well known effect Lariat chain
- Speed of transverse waves = speed of the string
- Waves appear to be stable

Conclusion

- Found important effect of bending stiffness
- Explained mechanism behind arch formation
- Developed a 3D numerical model of phenomenon
- Investigated relevant parameters

APPENDICES

3. String of beads

\neq

SLOVAKIA
IYPT '12

Plasticine beads do not work

\rightarrow -

Climbing rope

Thread

http://www.youtube.com/watch?v=sRkI4qOWB7A

