

SLOVAKIA

Michal Hledík

3. String of beads

A long string of beads is released from a beaker by pulling a sufficiently long part of the chain over the edge of the beaker.

Due to gravity the speed of the string increases. At a certain moment the string no longer touches the edge of the beaker.

Investigate and explain the phenomenon.

Content

- 1. Mechanism of levitation
- 2. Simulation

3. Investigating interesting aspects of the phenomenon

SLOVAK

Simple 1D model

Simple 1D model

Rate of change of momentum:

$$2v^2\sigma = 2F_2 - F_{PULLEY}$$

Resulting F_{PULLEY} :

$$F_{PULLEY} = 2h\sigma g$$

What if there is no pulley?

What is the source of energy?

Gravity potential? It would levitate in 1D model

Air drag effects? (Magnus effect...) Works with heavier and smaller beads

Bending stiffness of thread

Thread – non-zero **bending stiffness**

Small...

Significant compared to mass of beads

Let's test it

SLOVA

Different initial setting

SLOVAK

Big circles vs. Curly – small curvature – large curvature

Big circles – small curvature

Curly – large curvature

SLOVAKI

9

More measurements, average height

SLOVAKI

- String is trying to straighten
- Reaction normal force

SLOVAK

- Extra momentum upwards
- Higher speed upwards

 Height of arch increases

SLOVAKI

Beads

Weight

Weight

Result Torque [Nm]

SLOVAKIA

Developing a theory

• We know the important effect

Analytic theory?

Too complicated process
 → simulation

Forces:

- Gravity
- Thread
- Straightening
- Damping

SLOVAKI

Simulation – straightening $F_2 F_2 F_2$ F_1 F_1 F_1 F_2 F_3 F_3

- Keeping the length of thread constant → relation of F_1 , F_2
- Data from bending stiffness measurement \rightarrow torque (depending on angle) $F_2 = \frac{\tau}{\sin \alpha}$ $F_1 = F_2 \left(\frac{mr^2}{I} \sin^2 \alpha + 1 \right)$

Simulation – damping

Relative velocity according to adjacent bead

 \rightarrow Force in opposite direction

$$F = -Cv_{relative}$$

Simulation input

- Geometrical properties of string and beaker
- Experimental data **bending stiffness**
- Fitted coefficient of damping
- Initial distribution of beads random
 Letting the string fall to the beaker
 - Small random side velocity for instability

What if...?

- Very long string
- Influence of height over the floor

Different strings/ropes

Different beakers

Very long string

SLOVAKIA IYPT '12

Height of the beaker over the floor

SLOVAKI

Different strings

Metal beads
 – work

Thread,
 climbing rope
 do not work

Beaker – high walls, small hole

Beaker – low walls

Stable shape of the arch

- Well known effect Lariat chain
- Speed of transverse waves = speed of the string
- Waves appear to be stable

Conclusion

- Found important effect of bending stiffness
- Explained mechanism behind arch formation
- Developed a 3D numerical model of phenomenon
- Investigated relevant parameters

SLOVAKIA IYPT '12

APPENDICES

3. String of beads

Plasticine beads – do not work

Climbing rope

Thread

SLOVAKIA IYPT '12

http://www.youtube.com/watch?v=sRkI4qOWB7A