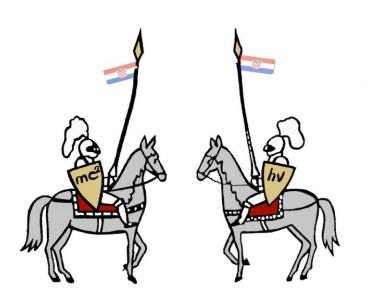
IYPT 2013 TEAM OF CROATIA

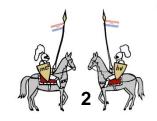
2. ELASTIC SPACE

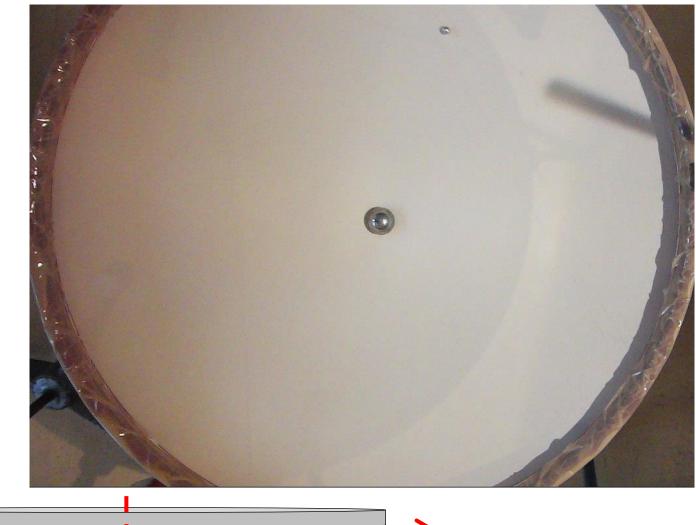
Reporter: Domagoj Pluščec

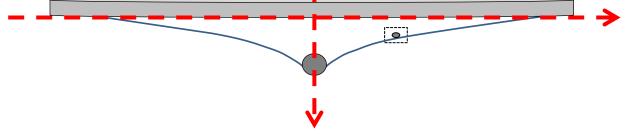


Problem

The dynamics and apparent interactions of massive balls rolling on a stretched horizontal membrane are often used to illustrate gravitation. Investigate the system further. Is it possible to define and measure the apparent "gravitational constant" in such a "world"?



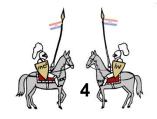






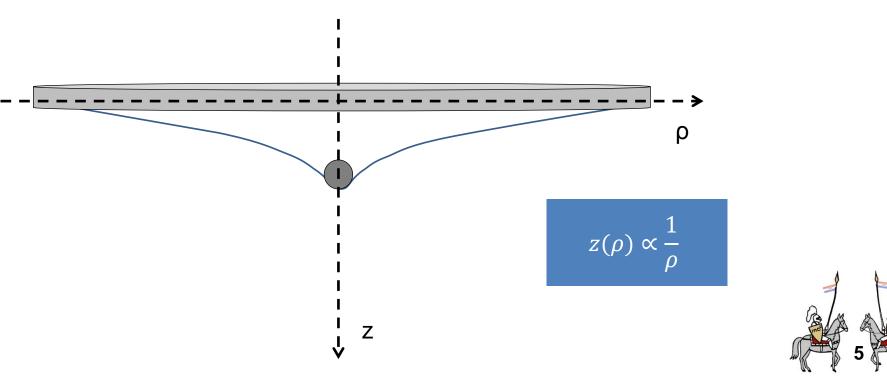
Summary

- Hypothesis
- Theory
 - Fabric shape
 - Test ball
 - Kepler's laws
- Apparatus and methods
- Results
 - Fabric shape
 - Gravitational constant
 - Orbit
 - Energy and angular momentum
- Conclusion

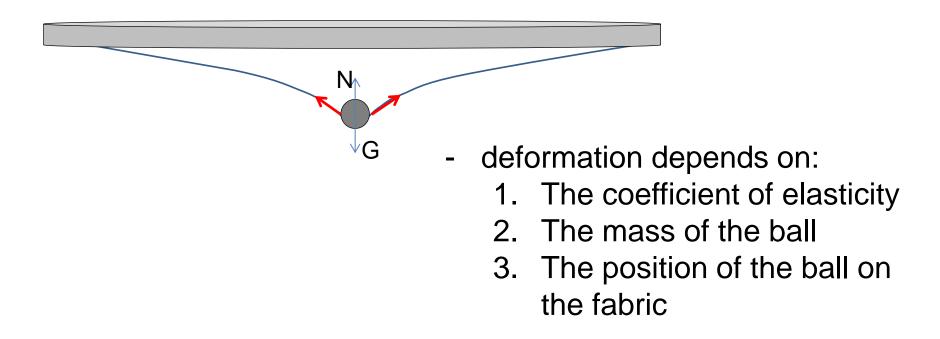


Hypothesis

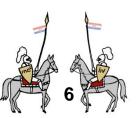
It was assumed that the shape of the curve behaves like a gravitational potential and that the form should be inversely proportional to ρ



Fabric shape and force on the ball

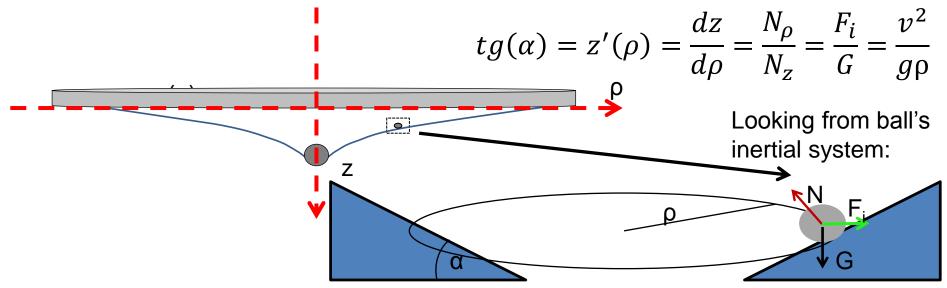


Shape can't be calculated analytically because of big deformations \rightarrow it was determined experimentally

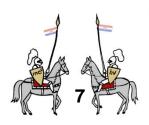


Test ball – circular orbit

Test ball – small mass \rightarrow negligibile deformation

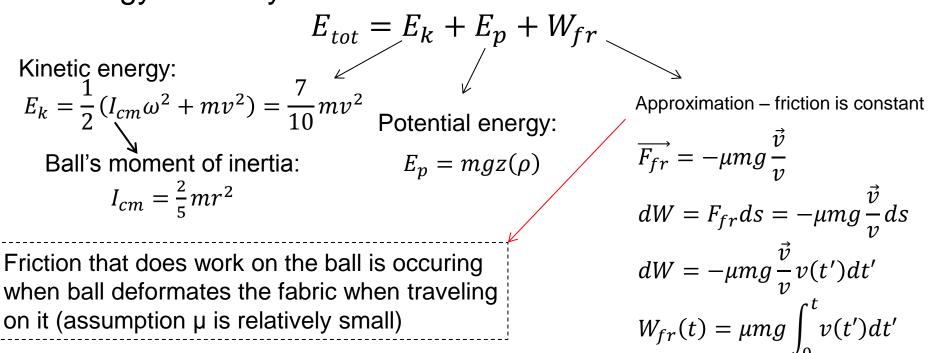


	Elastic membrane	Universe
Force	$F = -mg\frac{dz}{d\rho}$	$F = -m\frac{\gamma M}{\rho^2}$
Speed	$v = \sqrt{g\rho \frac{dz}{d\rho}}$	$v = \sqrt{\rho g}$

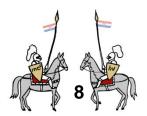


Test ball – energy

• Energy of the system:



$$E = \frac{1}{2} \left(\frac{7}{5} m v^2\right) + \text{mgz}(\rho) + \mu mg \int_0^t v(t') dt$$



Test ball – angular momentum

$$\vec{L} = m\vec{\rho} \times \vec{v} = m\vec{\rho} \times \vec{v_{\rho}} + m\vec{\rho} \times \vec{v_{\phi}} = m\vec{\rho} \times \vec{v_{\rho}}$$

$$L = m\rho^{2}\omega$$

$$\frac{d\vec{L}}{dt} = m\vec{v} \times \vec{v} + m\vec{\rho} \times \vec{a} = m\vec{\rho} \times \vec{a_{\rho}} + m\vec{\rho} \times \vec{a_{\phi}} = m\vec{\rho} \times \vec{a_{\phi}}$$

$$\vec{a_{\phi}} = \frac{F_{fr}}{m} = -\mu g \frac{\vec{v}}{v}$$

$$\vec{dL} = -\mu mg \frac{\omega\rho^{2}}{v} \vec{k} = -\mu g \frac{L}{v} \vec{k}$$

$$L(t) = L_{0} + \Delta L(t)$$

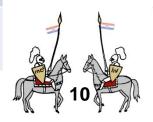
$$L(t) = m\rho_{0}^{2}\omega_{0} - \mu mg \int_{0}^{t} \frac{\rho^{2}\omega}{v} dt$$

L – angular momentum ω – angular velocity

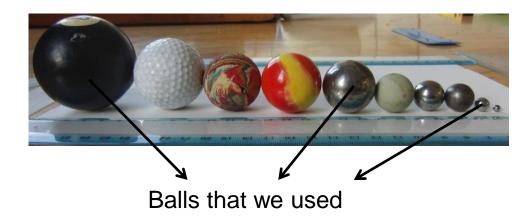
Kepler's laws

- 1. The orbit of every planet is an ellipse with the Sun at one of the two foci.
- 2. A line joining a planet and the Sun sweeps out equal areas during equal intervals of time. ($\vec{L} = const$)
- 3. The square of the orbital period of a planet is proportional to the cube of average distance from the sun.

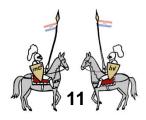
Universe	Elastic membrane
$T^2 = \frac{4\pi^2 \rho^3}{\gamma M}$	$T^2 = \frac{4\pi^2 \rho}{g \frac{dz}{d\rho}}$
$\frac{dL}{dt} = 0$	$\frac{dL}{dt} = -\mu g \frac{L}{\nu}$



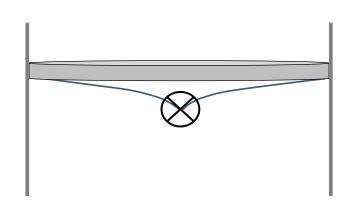
Apparatus

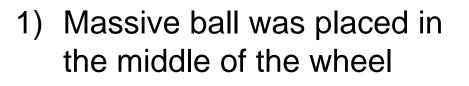


- Bicycle wheel (R = 32.2 cm)
- Elastic fabric
- Stands
- Tubular spirit level
- Meter
- Camera
- Balance
- Computer software (ImageJ, IrfanView, self-made programs for numerical analysis)

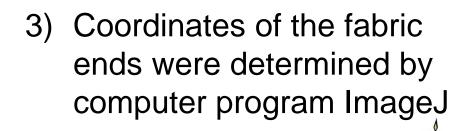


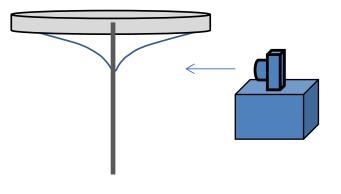
Method – fabric shape



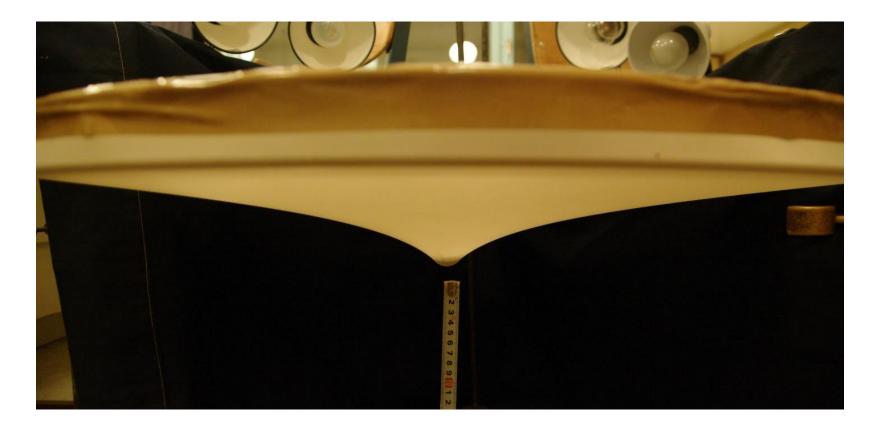


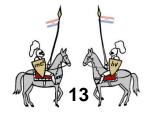
2) Camera was perpendicular to the lowest point of elastic membrane



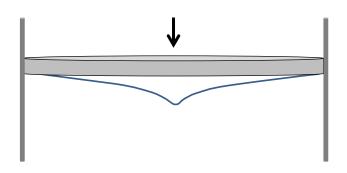


Example of shape's photography



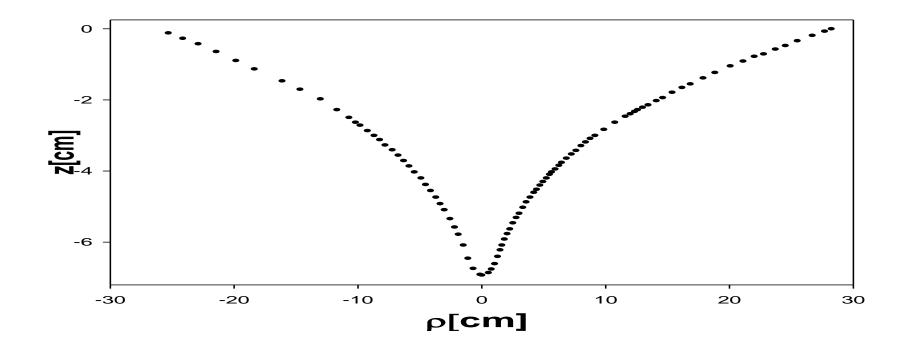


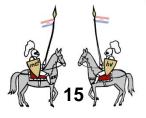
Method – motion of the balls



- Massive ball center of the wheel
- Small ball ejected from the channel with initial speed
- Camera was perpendicular to the plane of the wheel
- Coordinates of the balls were obtained by video analysis (120-240)fps

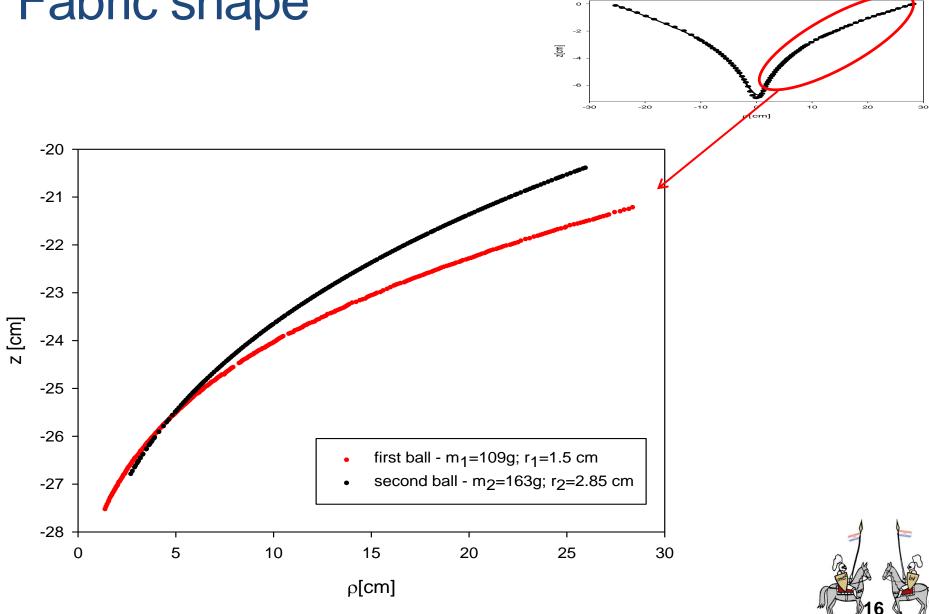
Fabric shape



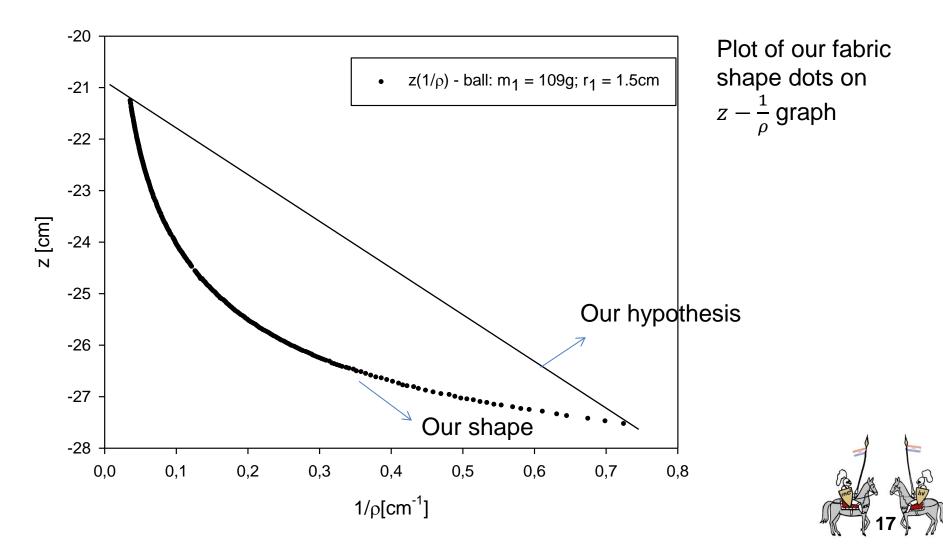


Ball: m₁=109g; r₁=1.5 cm

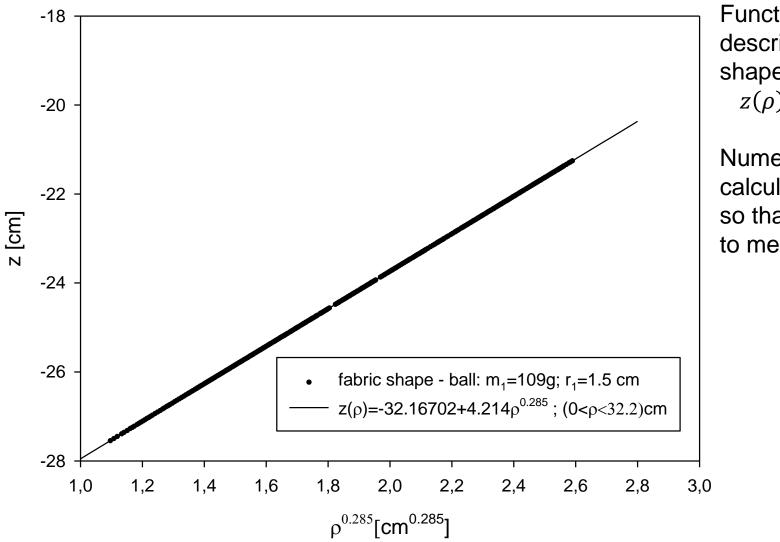
Fabric shape



Test – is our potential proportional to Kepler's potential ?

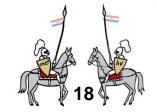


Function of our shape



Function that describes fabric shape in form: $z(\rho) = A + B\rho^p$

Numerically calculated A, B, p so that they best fit to measured data



"Gravitational constant"

Elastic membrane

$$z(\rho) = A + B\rho^{p}$$
$$U(\rho) = U_{0} + mgB\rho^{p}$$

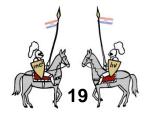
$$F = -\nabla U(\rho) = -mg \frac{dz}{d\rho} = -mg \frac{pB}{\rho^{1-p}}$$

 \Rightarrow constant in our system:
 $\Gamma = pgB$
 $z(\rho) = \underbrace{32.16702}_{\Gamma = 11.782} \underbrace{4.214}_{P} \underbrace{4.214}_{P} \underbrace{6.285}_{P}$

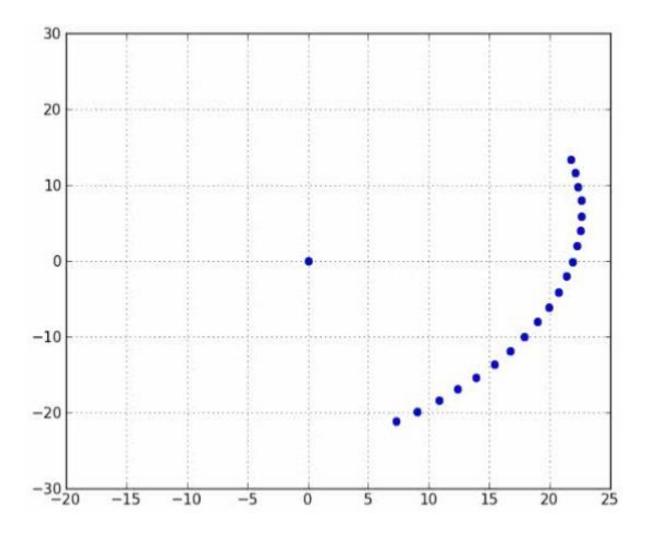
Universe

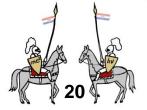
$$U(\rho) = \frac{\gamma M}{\rho}$$
$$F = -\gamma \frac{mM}{\rho^2}$$

$$\gamma = 6.6742 * 10^{-11} m^3 kg^{-1}s^{-2}$$

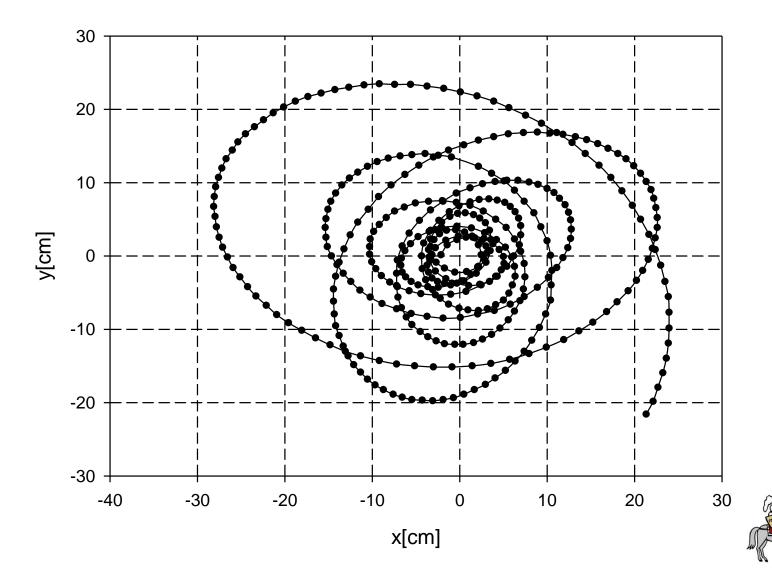


Trajectory animation



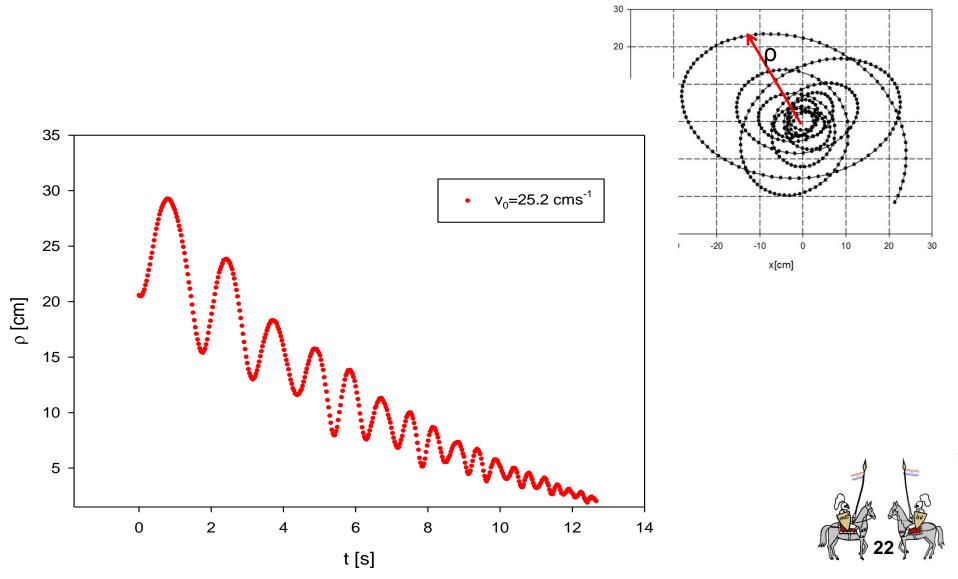


Trajectory

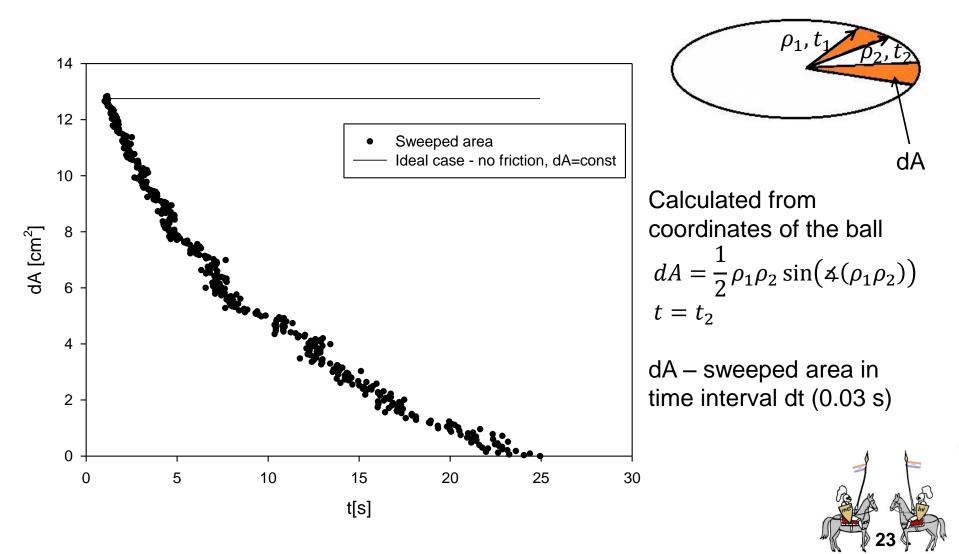


Domagoj Pluscec

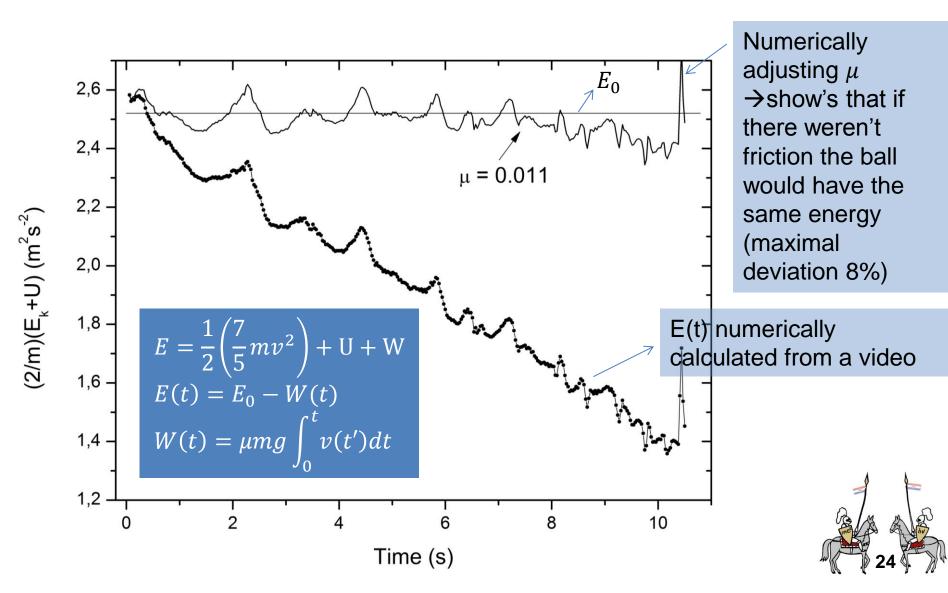
Ball distance from center vs time



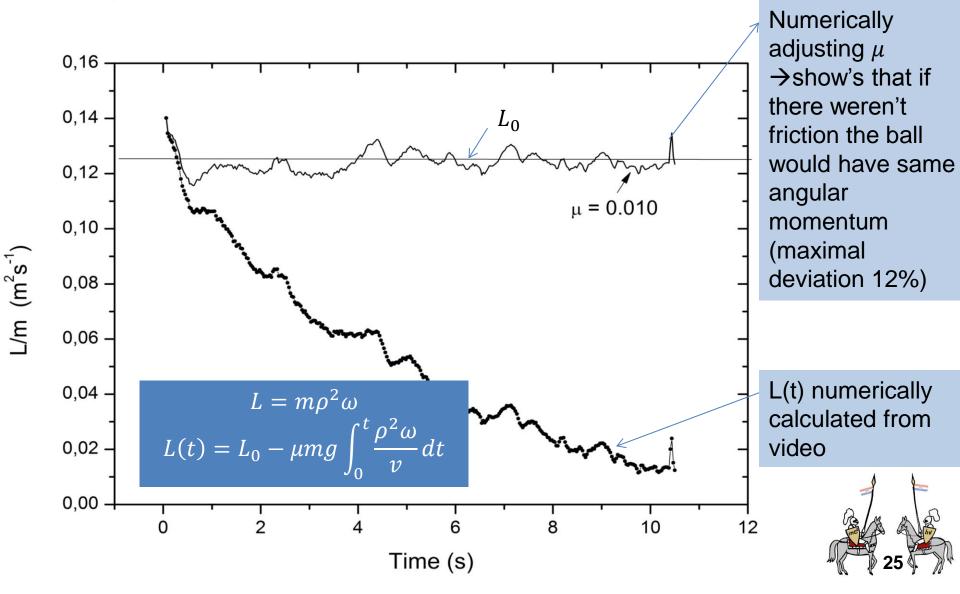
Second Kepler's law



Energy

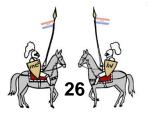


Angular momentum



Conclusion

- We have determined the potential of the system by experimentaly determing shape of our membrane
- Potential in our system isn't proportional to Kepler's potential
- We have calculated constant of our system which is not analogous to the gravitational constant because we couldn't determine dependence of deformation to the mass
- We have a non-central force (friction) in system
 - Second Kepler's law isn't valid in our case

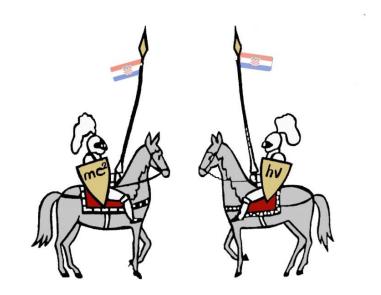


Conclusion – comparison between universe and elastic membrane

	Universe	Elastic membrane
Potential	$U(\rho) = \frac{\gamma M}{\rho}$	$U(\rho) = U_0 + mgB\rho^p$
Force	$F = -m\frac{\gamma M}{\rho^2}$	$F = -mg\frac{dz}{d\rho}$
Circular orbit speed	$v = \sqrt{g\rho}$	$v = \sqrt{g\rho \frac{dz}{d\rho}}$
Period of an orbit	$T^2 = \frac{4\pi^2 \rho^3}{\gamma M}$	$T^{2} = \frac{4\pi^{2}\rho}{g\frac{dz}{d\rho}}$
Angular momentum	$L = m\rho_0^2 \omega_0$ $L = const$	$L(t) = m\rho_0^2\omega_0 - \mu mg \int_0^t \frac{\rho^2\omega}{\nu} dt$
Energy	$E_{tot} = E_k + E_p$	$E = \frac{1}{2} \left(\frac{7}{5} m v^2\right) + \text{mgz}(\rho) + \mu mg \int_0^t v(t') dt$

IYPT 2013 TEAM OF CROATIA

THANK YOU



Period of an orbit

$$F_{i} = -F_{cp}$$
$$mg \frac{dz}{d\rho} = m\omega^{2}\rho$$
$$g \frac{dz}{d\rho} = \frac{4\pi^{2}}{T^{2}}\rho$$
$$T^{2} = \frac{4\pi^{2}\rho}{g \frac{dz}{d\rho}}$$