IYPT 2013 TEAM OF CROATIA

4. SOLITON

Reporter: Domagoj Pluščec

Problem

A chain of similar pendula is mounted equidistantly along a horizontal axis, with adjacent pendula being connected with light strings. Each pendulum can rotate about the axis but can not move sideways (see figure). Investigate the propagation of a deflection along such a chain. What is the speed for a solitary wave, when each pendulum undergoes an entire 360° revolution?

Pendulum system

Summary

- Theory
 - What is a soliton?
 - Model of the system
- Experimental
 - Apparatus
 - Methods
- Results
- Conclusion

Equilibrium position

Soliton

- Wave packet that travels trought medium with unchanged shape
- Form of solution of some nonlinear partial diferential equations (Sine-gordon equation, KdV equation)
- They can interact with other solitons, and emerge from the collision unchanged except for a phase shift

Theory – basic concepts

Theory – our model

• Torque from elastic string:

$$\tau_{k+1,k} = kl^2 A_{k+1,k} \sin(\varphi_{k+1,k})$$

• Equation of the motion of the pendulum:

 $I\alpha_{k} = -mgdsin\varphi_{k} + kl^{2}(A_{k+1,k}sin\varphi_{k+1,k} - A_{k,k-1}sin\varphi_{k,k-1})$

- We solved it numerically with computer (programing languages python and quick basic) for every pendulum in some time interval
 - initial conditions from experimental setup (initial position and velocities for system of pendulums)

Substitution:

$$A_{n+1,n} = \left(1 - \frac{1}{\sqrt{1 + B^2 sin^2 \frac{\varphi_{n+1,n}}{2}}}\right); B = \frac{2l}{\Delta z}$$

Apparatus

- HS camera
- Custom stand
 - Reduce vibrations of horizontal rod
- Ruler
- Software (ImageJ, self-made programs for numerical analysis)
- Balance

Characteristics of our system

- Pendulum
 - Length = 14.5 cm
 - Mass = 45 g
 - Distance from centre of the gravity to the rotational center = 6.1 cm
 - Moment of inertia = $3.69 * 10^{-4} \text{ kgm}^2$
 - Internal radius of a ball bearing = 8 mm
 - External radius of a ball bearing = 22 mm
- System
 - Distance between pendulums 5.3 cm
 - Number of pendulums = 27

Method

- Weight was connected to the first pendulum
- We released the weight to give initial speed
- Weight would disconnect from pendulum

 The wave was filmed by high speed camera (120 -420 fps)

Traveling wave

120 fps

Speed of the wave – displacement of the amplitude of the wave divided by the time interval

Theoretical wave

- We created system with the same initial conditions
- Every white line represents one pendulum

Comparison

Width of the wave vs coefficient of elasticity

Speed of the wave vs energy given to the system

Collision – clockwise-counterclockwise

Solitons repel each other – they reflect with phase shift = π In collision they behave like a fixed end

Collision – clockwise-clockwise

Solitons pass trought each other – they don't add them selves by superposition principle

Conclusion

- Pendulum system was constructed
- We have modeled the system theoreticaly and shown the correlation between experiment and theory
- Speed of the wave increases with initial energy given to the system
- Speed of the wave increases with increasement of coefficient of elasticity of the string
- Two types of collision were observed
 - Same direction of rotation \rightarrow pass through each other
 - Opposite direction of rotation \rightarrow reflection on fixed end

[1] Andrey Miroshnichenko, Solitons and Soliton collisions, http://www.mpipksdresden.mpg.ge/~andreym/solitons

[2] Peter S. Lomdahl, What is soliton, http://www.fas.org/sgp/othergov/doe/lanl/pubs/00326980.pdf

[3] System of Pendulums: A Realization of Sine-Gordon Model, http://demonstrations.wolfram.com/SystemOfPendulumsARealizationOf TheSineGordonModel/

[4] Clay James Grewcoe, Analysis of soliton solutions of Sine -Gordon equation.

IYPT 2013 TEAM OF CROATIA

THANK YOU

Derivation of theory

Hooke's law: $F_{k+1,k} = k \left(r_{k+1,k} - \Delta z \right)$ $F_{k+1,k} = k \Delta z \left(\sqrt{1 + b^2 sin^2 \left(\frac{\varphi_{k+1,k}}{2} \right)} - 1 \right)$

$$\Delta \vec{r} = \vec{r_{k+1}} - \vec{r_k}$$

$$\vec{r_n} = \vec{\rho_n} + z_n \vec{k}$$

$$\vec{\rho_n} = l(\cos(\varphi_n)\vec{i} + \sin(\varphi_n)\vec{j})$$

$$|r_{k+1,k}| = \sqrt{\vec{\rho_{k+1,k}} + \Delta z}$$

$$|r_{k+1,k}| = \Delta z \sqrt{1 + b^2 \sin^2\left(\frac{\varphi_{k+1,k}}{2}\right)}$$

$$b = \frac{2l}{\Delta z}$$

Derivation of theory

Hooke's law:

$$F_{k+1,k} = k\Delta z \left(\sqrt{1 + b^2 sin^2 \left(\frac{\varphi_{k+1,k}}{2}\right)} - 1 \right)$$

→ Z

One pendulum rotation - damping

