Elastic space

Ivan Chaika Roman Doronin Mikhail Luptakov Vitaliy Matiunin Vladislav Tumanov

The problem

The dynamics and apparent interactions of massive balls rolling on a stretched horizontal membrane are often used to illustrate gravitation. Investigate the system further. Is it possible to define and measure the apparent "gravitational constant" in such a "world"?

Membrane deflection and attractive force

Membrane tension

- Membrane tension σ is constant for all directions.
- Membrane tension σ is high enough, so a membrane inclination angle α is small everywhere.

Superposition principle

Membrane deflection

 σ — membrane tension $\alpha << 1$ — membrane inclination angle

$$Mg = 2\pi r \cdot \sigma \alpha \implies \alpha = \frac{Mg}{2\pi r \sigma}$$

Horizontal acting force

• Horizontal force acting on the ball is equal to $mg\alpha$, where α is the membrane inclination angle in the absence of the ball.

"Law of universal gravitation"

Two balls lying on the membrane attract each other. Their attractive force is:

The weight of membrane

Balance condition:

$$(M + \pi r^2 \rho)g = 2\pi r \sigma \alpha$$

Membrane weight is negligible, if

$$\pi r^2 \rho \ll M$$

Membrane profile

Profile equation in the small angle approximation:

$$\frac{dy}{dr} = \tan \alpha \approx \alpha = \frac{Mg}{2\pi\sigma} \cdot \frac{1}{r}$$

$$y(r) = \frac{Mg}{2\pi\sigma} \cdot \int_{r_0}^{r} \frac{dr}{r} = \frac{Mg}{2\pi\sigma} \cdot \ln\left(\frac{r}{r_0}\right)$$

Experimental setup

Membrane properties

- Density $\rho = 240 \text{ g/m}^2$.
- Membrane tension $\sigma = 70$ N/m is defined by the elongation of rubber extensions.
- In fact, this tension is less because of hard slats mounted at the rim of membrane.

Measurement of inclination angle

Experimental diagram

Membrane properties

Membrane tension

$$\sigma = \frac{mg}{2\pi\alpha r}$$

Calculated value $\sigma = 55 \pm 5 \text{ N/m}$.

Gravitational constant

$$G = \frac{g^2}{2\pi\sigma}$$

Calculated value $G = 0.28 \pm 0.03 \text{ m}^2/(\text{kg}\cdot\text{s}^2)$.

Radial motion

Statement of the problem

The ball rolls radially with zero initial velocity

Effective mass

$$\begin{cases} m\dot{v} = F - N \\ I\dot{\omega} = NR \\ v = \omega R \end{cases} \Rightarrow \underbrace{\left(m + \frac{I}{R^2}\right)}\dot{v} = F$$
Effective mass

Theoretical calculation

Energy conservation law (with $v(r_0) = 0$):

Effective mass
$$\frac{\tilde{m}v^2}{2} + GmM \cdot \ln\left(\frac{r}{r_0}\right) = 0$$

$$v(r) = \sqrt{2MG\frac{m}{\tilde{m}} \cdot \ln\left(\frac{r_0}{r}\right)}$$

Experiment (video 240 fps)

Distance vs. time

Velocity vs. distance

Circular motion

Statement of the problem

Small ball rolls on a circular orbit. Big ball is held in place by friction.

Theory

Velocity of the ball on a circular orbit is independent of the radius.

Experimental setup

Membrane profile and inclination

Rolling on a circular orbit (video)

Used balls

Comparison of theory with experiment

Ball	m*/m	Theoretical velocity (cm/s)	Experimental velocity (cm/s)
Massive center	1	42.5	42.5 ± 1
Solid ball	7/5	35.7	35 ± 1
Hollow shell	5/3	32.7	32 ± 1

General shape of the orbit

Orbital equation

Angular momentum conservation law:

$$J = \tilde{m}r^2\dot{\phi} = \text{const}$$

Energy conservation law:

$$E = \frac{\tilde{m}\dot{r}^2}{2} + \frac{\tilde{m}r^2\dot{\varphi}^2}{2} + U(r) = \text{const}$$

Orbital equation:

$$d\varphi = \frac{J \cdot dr}{r^2 \cdot \sqrt{2\tilde{m}(E - U(r)) - \frac{J^2}{r^2}}}$$

The orbit always is bounded

Effective potential for $F \sim 1/r$:

$$\tilde{U}(r) = U(r) + \frac{J^2}{2\tilde{m}r^2} = G \cdot Mm \cdot \ln\left(\frac{r}{r_0}\right) + \frac{J^2}{2\tilde{m}r^2}$$

$$\tilde{U}(r)$$
Arises logarithmically

Rotation of the apsis

Orbital motion without friction

Orbital motion with friction

Angle between the apsides

In computer simulation $\alpha = 250^{\circ} \pm 1^{\circ}$

Orbital motion (video 1)

Orbital motion (video 2)

Consecutive apsides

In this experiment
$$\alpha = 235^{\circ} \pm 5^{\circ}$$

Two moving balls

Two balls move on spirals

The heavy ball entrains the light ball

Very complex motion

- In the simplest model of this motion both balls are moving in their orbits around their common center of mass, while the center itself moves uniformly.
- Real situation contains two complications:
 - energy loss due to friction;
 - interaction of the balls with "the boundary of the world".

Summary

Conclusions

- Attractive force between the balls is inversely proportional to the radius r instead r^2 in the case of real gravity.
- Kepler's first law (the orbit of every planet is an ellipse) is no longer satisfied.
- Kepler's second law (a line joining a planet and the Sun sweeps out equal areas during equal intervals of time) is still valid.
- Kepler's third law now says that for the circular orbit the period of a planet is proportional to its orbital radius.

References

- Synge J.L. (1960) Classical dynamics.
- Borisov A.V., Mamaev I.S., Kilin A.A. (2002)
 "The rolling motion of a ball on a surface.
 New integral and hierarchy of dynamics".
 Regular and chaotic dynamics, 7, 201–219.

Thank you for your attention!