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The problem

The dynamics and apparent interactions of
massive balls rolling on a stretched horizontal
membrane are often used to illustrate
gravitation. Investigate the system further. Is it
possible to define and measure the apparent
“gravitational constant” in such a “world”?



Membrane
deflection and
attractive force



Membrane tension

e Membrane tension o is constant for all
directions.

e Membrane tension o is high enough, so
a membrane inclination angle o is small
everywhere.



Superposition principle
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Membrane deflection

o

c — membrane tension
o << 1 — membrane inclination angle
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Horizontal acting force

e Horizontal force acting on the ball is equal to
mgo, where o is the membrane inclination
angle in the absence of the ball.




“Law of universal gravitation”

Two balls lying on the membrane attract
each other. Their attractive force is:
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Instead r?
in 3-D case




The weight of membrane

Mg

Balance condition:

(M +nr’p)g = 2nrco

Membrane weight is negligible, if

nr’p< M



Membrane profile 10
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Profile equation in the small angle approximation :
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Experimental setup
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Membrane properties

e Density p = 240 g/m?

e Membrane tension o = 70 N/m is defined
by the elongation of rubber extensions.

e |In fact, this tension is less because of hard
slats mounted at the rim of membrane.
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Measurement of inclination angle

Laser
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Experimental diagram
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Membrane properties

° Membrane tension
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Calculated value O = 55 + 5 N/m.
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Calculated value G = 0.28 + 0.03 m?/(kg-s?).
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Radial motion
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Statement of the problem

The ball rolls radially
with zero initial velocity
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Effective

mass
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Theoretical calculation

Energy conservation law (with v(ry) = 0):
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Experiment (video 240 fps)

m=046¢g
M=7/5m=0.64 g




Distance vs. time
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Velocity vs. distance 22
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Circular motion
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Statement of the problem 24
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Small ball rolls on a circular orbit.
Big ball is held in place by friction.



Theory

«Gravitation force»

Second Newton’s law:
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Centripetal acceleration

Velocity of the ball on a circular orbit is independent of the radius.




Experimental setup

Vacuum rubber
membrane
(density 7 kg/m?2)
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Membrane profile and inclination
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Rolling on a circular orbit (video) 28




Used balls 29

“ Massive center

Hollow shell

Solid ball



Comparison of theory with experiment 30

Theoretical | Experimental
Ball m*/m velocity velocity
(cm/s) (cm/s)
Massive 1 42.5 42.5 + 1
center
Solid 7/5 35.7 35 + 1
ball
Hollow 5/3 32.7 32 £ 1
shell




(General shape
of the orbit
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Orbital equation

Angular momentum conservation law :
J =Mr’g = const
Energy conservation law:
) )
mr mr
E = 5 -+ Z(P +U (r) = const

Orbital equation:
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The orbit always is bounded 33

Effective potential for F ~ 1/r:
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Rotation of the apsis

The force increasing towards the
centre is not enough to rotate
the apsis on 360°
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Orbital motion without friction 35
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Orbital motion with friction 36
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Angle between the apsides

w

In computer simulation
a=250°+1°
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Orbital motion (video 1)
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Orbital motion (video 2)
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Consecutive apsides
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In this experiment
a=235°%5°
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Two moving balls
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Two balls move on spirals
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The heavy ball entrains the light ball 43
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Very complex motion 44

¢ |In the simplest model of this motion both balls
are moving in their orbits around their
common center of mass, while the center
itself moves uniformly.

e Real situation contains two complications:

energy loss due to friction;

iInteraction of the balls with “the boundary of the
world”.



Summary
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Conclusions

e Attractive force between the balls is
inversely proportional to the radius r
instead r? in the case of real gravity.

e Kepler's first law (the orbit of every planet is
an ellipse) is no longer satisfied.

e Kepler's second law (a line joining a planet
and the Sun sweeps out equal areas during
equal intervals of time) is still valid.

e Kepler's third law now says that for the
circular orbit the period of a planet is
proportional to its orbital radius.
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Thank you for
your attention!
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