#### Invent yourself

Ivan Chaika Roman Doronin Vitaliy Matiunin Aleksandr Severinov Vladislav Tumanov



#### The problem

It is more difficult to bend a paper sheet, if it is folded "accordion style" or rolled into a tube. Using a single A4 sheet and a small amount of glue, if required, construct a bridge spanning a gap of 280 mm. Introduce parameters to describe the strength of your bridge, and optimize some or all of them.

## Accordion style bridges

#### **Bridge testing**

Load platform







**Test results** 

 $\wedge \wedge \wedge \wedge$ 



## **Loading of thin-walled constructions** 6 **Global deformation** Local buckling

## Tube bridges

#### **Tube overhead crane**



- The tube usually breaks in the midspan.
- The tube is wrinkled at the top due to local buckling.





- Force F applied to the arm L produces torque  $F \cdot L$ .
- This torque is balanced by elastic forces of tension and compression in the tube walls:  $F \cdot L = F^* \cdot a$ .
- Critical compression at the top of the tube leads to a local buckling.

We expect that the breaking load is independent on the diameter of the tube.





11

F

**Test results** 



A4 sheet of paper curled into a tube 297 mm in length. For each tube diameter 10 trials were conducted.

#### **Testing of twin tubes**



#### **Distribution of torques**



14

The most dangerous place of the beam is its midspan. So it is desirable to strengthen the midspan more than the ends.

#### How to strength the midspan

34 : 21 = 1,6 Expected to increase the breaking load by 1.6 times.





#### **Testing of strengthening tubes**



**Red segments** — tubes of constant section **Blue segments** — tubes with midspan strengthening

# Triangular beam bridges

### Why triangular beam is stronger than round?



**Test results** 



20

## Truss bridges

#### **Truss bridge in Novosibirsk**



#### **Properties of truss structure**

- A truss structure consists of straight members connected at nodes.
- Trusses are composed of triangles because of the structural stability of that shape.



#### **Properties of truss structure**

• External forces and reactions in trusses act such a way that truss members are only in tension or in compression.

23

• Torques in truss structures are excluded.



#### **Truss structure for paper bridges**

- Paper is enough strong in tension.
- Short paper tubes are sufficiently strong in compression.
- So a truss structure may be enough good for paper bridges.

フレ



#### "Inverted king-post truss"



#### 30 N



6 bridges of this type were tested. In 3 trials horizontal beam bent (**32**, **30**, **31** N). In 3 trials a bracing broken (**30.5**, **32.5**, **28.5** N).

#### "King-post truss" with triangular beam



6 bridges of this type were tested. Breaking load was **102**, **61**, **42**, **66**, **59**, **56**, **47**, **61** N. The beam was usually bending "sideways".



Four bridges broke under the load of **31**, **32**, **32.3**, **34** N.

#### Arch truss with strengthening



29

### Paper tensile test

#### **Testing procedure**



**Testing results** 



#### **Material properties**

Young's





- Young's modulus *E* = 5·10<sup>9</sup> N/m<sup>2</sup>.
- Tensile strength 3500 N/m.

33

## Euler rods instability

#### **Euler's formula**



When  $F > F^*$ , the axial load work exceeds the energy of elastic deformation of the rod, and the loss of stability becomes energetically favorable.

#### **Calculation of the critical load**

- Tube length *L* = 15 cm.
- Tube inner radius *r* = 3 mm.
- Width of a sheet **74 mm**  $\rightarrow$  4 layers of paper.
- Thickness of the wall  $\delta = 0,4$  mm.
- Area moment of inertia  $J = \pi r^3 \delta = 4 \cdot 10^{-11} m^4$ .
- Flexural rigidity  $EJ = 0,2 \text{ N} \cdot \text{m}^2$ .
- Calculated critical load *F*\* = 100 N.

#### **Testing of tubes stability**



- 8 tubes were tested.
- Global buckling occurs with a load 18–22 N.
- Local buckling occurs with a load 22–26 N.
- Tubes loose stability under the load 5–6 times less than F\*.

37

### Summary

- The members of paper bridges have thin walls, so those bridges are broken due to local buckling of their walls.
- In a truss structure all elements work on compression or tension, and do not work on bending. As a result, truss paper bridges can withstand the great load.
- The best design of our paper bridges withstands the load ~ 60 N.

#### References

- Timoshenko S.P. (1953) *History of the strength of materials*.
- Gordon J.E. (1978) *Structures, or why things don't fall down*.

40

## Thank you for your attention!