Elastic Space

Kamila Součková

2 Elastic Space

The dynamics and apparent interactions of massive balls rolling on a stretched horizontal membrane are often used to illustrate gravitation. Investigate the system further. Is it possible to define and measure the apparent "gravitational constant" in such a "world"?
..."illustrate gravitation"...

The Correct Shape

 both systems:$$
E_{k} \leftrightarrow E_{p}
$$

rubber sheet

gravity

$h(r)$: membrane height at radius r

Is the Shape Correct?

Is the Shape Correct?

PHYSICS OF A RUBBER SHEET

W hat Does Rubber Do?

Description of Rubber Sheet Curvature

- based on Feynman, R. P.: The Feynman Lectures On Physics, Vol. 2, Ch. 12:

h : membrane height at radius \boldsymbol{r}
ρ : distribution of mass
k : membrane stiffness
g : gravitational acceleration

Rubber Sheet vs. Gravity

rubber sheet shape

gravitational potential

$$
\nabla^{2} h=\frac{g}{k} \rho
$$

Rubber Sheet vs. Gravity

rubber sheet shape

gravitational potential

h : membrane height
ρ : distribution of mass
k : membrane stiffness
g : gravitational acceleration
ρ : distribution of mass
ϕ : gravitational potential
κ : gravitational constant

Rubber Sheet vs. Gravity

gravitational potential

rubber sheet shape gravitational potential 3D

$$
\nabla^{2} h=\frac{g}{k} \rho
$$

GRAVITY IN 2 DIMENSIONS

Rubber Sheet and Gravity Equivalence

The Form of Newton's Law of Gravitation

- why $F_{g} \propto \frac{1}{r^{2}} \Rightarrow \phi \propto-\frac{1}{r}$?
- depends on the dimensionality of the world
informal reasoning: $F_{g} \propto$ intensity
- intensity in 3D $\propto \frac{1}{r^{2}}$
$-\quad$ intensity in 2D $\propto \frac{1}{r} \quad \Rightarrow F_{g} \propto \frac{1}{r}$
(formal derivation based on Divergence Theorem in Appendix)

2D

$$
F_{g} \propto \frac{1}{r}
$$

2D : $F_{g} \propto \frac{1}{r} \Rightarrow \phi \propto \log \frac{r}{R_{0}}$

2D : $F_{g} \propto \frac{1}{r} \Rightarrow \phi \propto \log \frac{r}{R_{0}}$

$$
\begin{aligned}
& h=C \cdot \ln \left(\frac{r}{R_{0}}\right) \\
& C=16 \mathrm{~mm} \\
& R_{0}=3 \mathrm{~mm}
\end{aligned}
$$

2D : $F_{g} \propto \frac{1}{r} \Rightarrow \phi \propto \log \frac{r}{R_{0}}$

FIN DING THE GRAVITATIONAL CONSTANT

Where to get κ_{m} ?

- from the membrane shape (potential):

$$
\phi(r)=2 \kappa_{m} M \ln \left(\frac{r}{R_{0}}\right) \quad \begin{aligned}
& \text { (by solving } \nabla^{2} h=\frac{g}{k} \rho \text { using } \\
& \text { a Green's function) }
\end{aligned}
$$

$$
\kappa_{m}=\frac{C}{2 M}
$$ diameter

Results

$$
u(r)=C \cdot \ln \left(\frac{r}{R_{0}}\right) \Rightarrow \kappa_{m}=\frac{C}{2 M}
$$

0	0,2	0,3	0,4	0,5
	0,1	$\mathbf{M ~ [k g] ~}^{0,3}$		

$\kappa_{m}=(5.3 \pm 0.2) \cdot 10^{-2} \mathrm{~m} \mathrm{~kg}^{-1}$

Results

$$
u(r)=C \cdot \ln \left(\frac{r}{R_{0}}\right) \Rightarrow \kappa_{m}=\frac{C}{2 M}
$$

$\kappa_{m}=(5.3 \pm 0.2) \cdot 10^{-2} \mathrm{~m} \mathrm{~kg}^{-1}$

DYNAMICS

Dynamics

- the shape is correct \Rightarrow approx. works
- but: energy losses (friction / rolling resistance)
\Rightarrow conservation of mechanical energy
+ elasticity: finite speed of "gravitational interaction"
$m=1 \mathrm{~g}, d=12 \mathrm{~mm}$

0.2 WhMn~~~~~~ $_{E_{k}}$
0

5

Ellipses?

- Bertrand's theorem: stable, closed orbits can only exist if $\phi \propto-\frac{1}{r}$ or $\phi \propto r^{2} \Rightarrow$ no closed orbits here

- pericenter
—trajectory

$$
\begin{aligned}
& M=1.8 \mathrm{~kg} \\
& m=9.7 \mathrm{~g} \\
& r_{\text {init }}=13.4 \mathrm{~mm}
\end{aligned}
$$

Kepler's Laws

Kepler's Laws

no elliptical orbits
$2^{\text {nd }}$ Law

theoretically:
(conservation of momentum)
experiment: X
(energy losses - friction)

Kepler's Laws

theoretically:
(conservation of momentum)
no elliptical orbits
force equilibrium ($F_{g}=$ $\left.m \omega^{2} a\right)$
$\frac{a^{(2)}}{T^{2}} \propto \frac{a}{T}=$ const.
same motion \Rightarrow

\Rightarrow shape $=$ potential

description of sheet curvature

same equations as gravity, but 2D
$F=\kappa_{m} \frac{M m}{r} ;$
$\kappa_{m}=0.053 \mathrm{~kg}^{-1} \mathrm{~m}^{2} \mathrm{~s}^{-2}$

dynamics:

Kepler's Laws:

same motion \Rightarrow
\Rightarrow shape $=$ potential
description of sheet curvature
same equations as gravity, but 2D

$$
F=\kappa_{m} \frac{M m}{r} ; \kappa_{m}=0.053 \frac{\mathrm{~m}^{2}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}}
$$

dynamics:

Kepler's Laws:

APPENDIX

\rightarrow gravity, rubber sheet: equations
\rightarrow gravity in N-D
\rightarrow derivation of Kepler's 3rd Law
\rightarrow small slopes approximation

ϕ : Poisson's Equation

- intensity $\boldsymbol{g}=\frac{\boldsymbol{F}}{\boldsymbol{m}}$: gradient of potential

$$
\boldsymbol{g}(\boldsymbol{r})=-\nabla \phi(\boldsymbol{r})
$$

- Gauss's Theorem:

$$
\nabla \cdot \boldsymbol{g}(\boldsymbol{r})=-4 \pi \kappa \rho(r)
$$

- together: Poisson's equation

$$
\nabla \cdot(-\nabla \phi(\boldsymbol{r}))=-4 \pi \kappa \rho(r)
$$

$$
\Delta \phi(\boldsymbol{r})=4 \pi \kappa \rho(r)
$$

$\phi:$ Boundary Conditions, $\rho(\boldsymbol{r})$

$$
\Delta \phi(\boldsymbol{r})=4 \pi \kappa \rho(r)
$$

- $\varphi(\infty)=$ const., therefore

$$
\left.\partial_{n} \varphi\right|_{S}=0
$$

- ρ : point mass in our measurements:

$$
\rho(\boldsymbol{r})=m \delta(\boldsymbol{r}),
$$

where $\delta(\boldsymbol{r})$ is δ-function
$\left(\int_{-\infty}^{\infty} \delta(x) \mathrm{d} x=1, \forall x \in R-\{0\}: \delta(x)=0\right)$

h : Poisson's Equation

- net force causing the rubber sheet to bend:
$\Delta F=k \Delta y \sin \theta_{2}-k \Delta y \sin \theta_{1}$
$\Delta F=k \Delta y\left(\sin \theta_{2}-\sin \theta_{1}\right)$

- for $\theta \ll 1: \sin \theta \approx \tan \theta \approx \frac{\partial h}{\partial x}$, then

$$
\Delta F=k \Delta y\left(\frac{\partial h_{2}}{\partial x}-\frac{\partial h_{1}}{\partial x}\right)=k \Delta y \frac{\partial^{2} h}{\partial x^{2}} \Delta x
$$

k : "surface tension" (force per length)

h: Poisson's Equation

- deformation is caused by gravity:

$$
\Delta F=g \rho \Delta x \Delta y
$$

- substitute $\Delta F=k \Delta y \frac{\partial^{2} h}{\partial x^{2}} \Delta x$:

$$
\frac{\partial^{2} h}{\partial x^{2}}=\frac{\Delta F}{k \Delta x \Delta y}=\frac{\rho g}{k}
$$

- generalization (vector fields):

$$
\Delta h(\boldsymbol{r})=\frac{g}{k} \sigma(\boldsymbol{r})
$$

$h:$ Boundary Conditions, $\rho(\boldsymbol{r})$

$$
\Delta \phi(r)=\frac{g}{k} \rho(r)
$$

- $\varphi(\infty)=$ const., therefore

$$
\left.\partial_{n} h\right|_{\infty}=0
$$

- ρ : area density negligible in comparison to mass of ball m, therefore approximated by δ function:

$$
\rho(\boldsymbol{r})=m \delta(\boldsymbol{r})
$$

Rubber Sheet vs. Gravity

- two differential equations of the same type, in the same region
- von Neumann boundary conditions: $\frac{\partial_{n} f}{\partial r}=0$
- in a closed region such differential equations have at most one solution (Dirichlet's problem, unique solution theorem)
\rightarrow character of solutions for ϕ and h will be the same - $\phi \propto h$

The Form of Newton's Law of

 Gravitation- why $F_{g} \propto \frac{1}{r^{2}}$?
- Gauss's Law: $\oiint_{\partial \nu} \boldsymbol{g} \cdot \mathrm{d} \boldsymbol{A}=-4 \pi \kappa M$ (gravitational flux through any closed surface is proportional to the enclosed mass)
- special case: spherical symmetry, point mass:

$$
g \cdot A_{s}=-4 \pi \kappa M ; A_{s}=4 \pi r^{2}
$$

$$
g=-\frac{4 \pi \kappa M}{A_{s}}=-\frac{\kappa M}{r^{2}}
$$

The Form of Newton's Law of

 Gravitation- why $F_{g} \propto \frac{1}{r^{2}}$?
- Gauss's Law: $\oiint_{\partial \nu} \boldsymbol{g} \cdot \mathrm{d} \boldsymbol{A}=-4 \pi \kappa M$ (gravitational flux through any closed surface is proportional to the enclosed mass)
- special case: spherical symmetry, point mass:
- holds in N dimensions, too

$$
g=-\frac{4 \pi \kappa M}{A_{s}} ; A_{s} \propto r^{N-1} \Rightarrow g \propto-\frac{\kappa M}{r^{(N-1)}}
$$

Gravitational Force in 2D

- $g=-\frac{2 \kappa M}{r}$
- potential $\phi(\boldsymbol{r})=\int_{r}^{\infty} \boldsymbol{g} \mathrm{d} \boldsymbol{r}=g \log r+\mathrm{C}$

Derivation of the $3^{\text {rd }}$ Kepler's Law

$$
F_{g}=F_{c f}
$$

standard - 3D

$$
\kappa_{m} \frac{M m}{r^{2}}=m \omega^{2} r
$$

$$
\text { substitute } \omega=\frac{2 \pi}{T}
$$

2D rubber sheet

$$
\kappa_{m} \frac{M m}{r}=m \omega^{2} r
$$

$$
\begin{gathered}
\frac{r^{3}}{T^{2}}=\frac{\kappa_{m} M}{4 \pi^{2}} \\
\frac{r^{3}}{T^{2}}=\frac{1}{4 \pi^{2}} \kappa M
\end{gathered}
$$

$$
\frac{r}{T}=\frac{1}{2 \pi} \sqrt{\kappa_{m} M}
$$

43

Large slopes do not work well

if the slope is too big, the projected force will not be monotonous

+ part of $E_{k} \rightarrow$ vertical motion!

$$
\downarrow
$$

we will work only with small slopes
we will work only with small slopes

we will work only with small slopes

\Rightarrow we can assume:

- uniform tension
$-\sin \theta \approx \theta \approx \tan \phi=\frac{\Delta h}{\Delta x}$
$-\cos \theta \approx 1$
- experiment:
- no inelastic (permanent) deformation of membrane
- Hooke's law holds (force \propto deformation)

