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Elastic Space

2
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2 Elastic Space

2

The dynamics and apparent interactions of 
massive balls rolling on a stretched horizontal 

membrane are often used to illustrate 
gravitation. Investigate the system further. Is it 

possible to define and measure the apparent 
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3

when viewed from 
the top, the objects 
should move as if 
interacting 
gravitationally
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The Correct Shape

rubber sheet
1

2
𝑚𝑣2 ↔ 𝑚𝑔ℎ(𝑟)

gravity
1

2
𝑚𝑣2 ↔ −𝜅

𝑚𝑀

𝑟

4

both systems:

𝐸𝑘 ↔ 𝐸𝑝

ℎ 𝑟 = −𝜅𝑚𝑀
1

𝑟

𝐹𝑔 = −𝜅
𝑀𝑚

𝑟2

ℎ(𝑟):  membrane height at radius 𝑟

= 𝜙 =
𝐸𝑝

𝑚
grav. potential



13

Is the Shape Correct?

5

−𝐶 ⋅
1

𝑟

?
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−𝐶 ⋅
1

𝑟

?

Is the Shape Correct?

is it only an experimental problem (i.e. 
imperfect membrane), or is it something 
fundamental?

6
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PHYSICS OF A RUBBER SHEET

What Does Rubber Do?
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Description of Rubber Sheet 
Curvature

• based on Feynman, R. P.: The Feynman Lectures On 

Physics, Vol. 2, Ch. 12:

8

𝛻2ℎ =
𝑔

𝑘
𝜌

valid for small deformations only;
derivation in Appendix

ℎ:  membrane height at radius 𝒓
𝜌:  distribution of mass
𝑘:  membrane stiffness
𝑔:  gravitational acceleration

Laplace operator
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Rubber Sheet vs. Gravity

rubber sheet shape gravitational potential

9

𝛻2ℎ =
𝑔

𝑘
𝜌
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Rubber Sheet vs. Gravity

rubber sheet shape gravitational potential

10

𝛻2ℎ =
𝑔

𝑘
𝜌

(derivations in Appendix)

ℎ:  membrane height
𝜌:  distribution of mass
𝑘:  membrane stiffness
𝑔:  gravitational acceleration

𝛻2𝜙 = 4𝜋𝜅𝜌

𝜌:  distribution of mass
𝜙:  gravitational potential
𝜅:  gravitational constant

Laplace operator
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Rubber Sheet vs. Gravity

rubber sheet shape gravitational potential

11

?
−𝐶 ⋅

1

𝑟
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D3

the rubber sheet model is a 2D problem!

12

𝛻2ℎ =
𝑔

𝑘
𝜌 𝛻2𝜙 = 4𝜋𝜅𝜌

✗
rubber sheet shape gravitational potential

D3
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GRAVITY IN 2 DIMENSIONS

Rubber Sheet and Gravity Equivalence

13
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Gravitation

• why 𝐹𝑔 ∝
1

𝑟2
⇒ 𝜙 ∝ −

1

𝑟
?

– depends on the dimensionality of the world

14

(formal derivation based on Divergence Theorem in Appendix)

informal reasoning: 𝐹𝑔 ∝ intensity

intensity in 3D ∝
1

𝑟2

intensity in 2D ∝
𝟏

𝒓
⇒ 𝐹𝑔 ∝

1

𝑟
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15

2D 𝐹𝑔 ∝
1

𝑟
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16

⇒ 𝜙 ∝ log
𝑟

𝑅0
2D 𝐹𝑔 ∝

1

𝑟
:
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17

ℎ = 𝐶 ⋅ ln
𝑟

𝑅0
𝐶 = 16 𝑚𝑚
𝑅0 = 3𝑚𝑚

✓

⇒ 𝜙 ∝ log
𝑟

𝑅0
2D 𝐹𝑔 ∝

1

𝑟
:
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ℎ = 𝐶 ⋅ ln
𝑟

𝑅0
𝐶 = 16 𝑚𝑚
𝑅0 = 3𝑚𝑚

✓
2D rubber sheet assumes the correct shape 
to model 2D gravity governed by the same 
equations!

18

⇒ 𝜙 ∝ log
𝑟

𝑅0
2D 𝐹𝑔 ∝

1

𝑟
:
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FINDING THE GRAVITATIONAL 
CONSTANT

19
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Where to get 𝜅𝑚?

• from the membrane shape (potential): 

𝜙 𝑟 = 2𝜅𝑚𝑀 ln
𝑟

𝑅0

20

𝜅𝑚 =
𝐶

2𝑀

(by solving 𝛻2ℎ =
𝑔

𝑘
𝜌 using 

ℎ(𝑟) = 𝐶 ⋅ ln
𝑟

𝑅0
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Experiment: changing mass, keeping 
diameter

small steel ball

strong 
magnet

additional 
weights

21
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0

0,02

0,04

0,06

0 0,1 0,2 0,3 0,4 0,5

κ m
[m

/k
g]

M [kg]

Results

22

𝑢(𝑟) = 𝐶 ⋅ ln
𝑟

𝑅0
𝜅𝑚 =

𝐶

2𝑀

𝜅𝑚 = 5.3 ± 0.2 ⋅ 10−2 m kg−1
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0

0,02

0,04

0,06

0 0,1 0,2 0,3 0,4 0,5

κ m
[m

/k
g]

M [kg]

Results

23

𝑢(𝑟) = 𝐶 ⋅ ln
𝑟

𝑅0
𝜅𝑚 =

𝐶

2𝑀

too
stretched

𝜅𝑚 = 5.3 ± 0.2 ⋅ 10−2 m kg−1
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DYNAMICS

24
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Dynamics

• the shape is correct ⇒ approx. works

• but: energy losses (friction / rolling
resistance)

⇒ conservation of mechanical energy

+ elasticity

25
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x [m]

y
[m

] t
[s]

26
M = 1.8 kg

𝐸𝑝
𝐸𝑘

Σ
y

[m
]

x [m]

t
[s]

𝑚 = 1 g, 𝑑 = 12 mm 𝑚 = 2.2 g, 𝑑 = 16 mm
13

𝐸𝑝

𝐸𝑘

Σ
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Ellipses?

• Bertrand's theorem: stable, closed orbits can 

only exist if 𝜙 ∝ −
1

𝑟
or 𝜙 ∝ 𝑟2 ⇒ no closed 

orbits here

27

pericenter

trajectory

𝑀 = 1.8 kg
𝑚 = 9.7 g
𝑟𝑖𝑛𝑖𝑡 = 13.4 mm

Johnson, Porter Wear (2010). Classical Mechanics With Applications
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Laws

1st Law

✗
no elliptical orbits

28

2nd Law 3rd Law
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Laws

1st Law

✗
no elliptical orbits

29

2nd Law 3rd Law

theoretically:✓
(conservation of 
momentum)

experiment: ✗
(energy losses friction)
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Laws

1st Law

✗
no elliptical orbits

30

2nd Law 3rd Law

theoretically:✓
(conservation of 
momentum)

experiment: ✗
(energy losses friction)

𝑎3

𝑇2
= const. for ∀

orbiting same mass 

(for circular orbits)

𝑎2

𝑇2
∝
𝑎

𝑇
= const.
✓

force equilibrium (𝐹𝑔 =

𝑚𝜔2𝑎)
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dynamics:

𝐸𝑘

𝐸𝑝

Σ

✓

same equations as gravity, but 2D

𝐹 = 𝜅𝑚
𝑀𝑚

𝑟
; 𝜅𝑚 = 0.053𝑘𝑔

−1𝑚2𝑠−2

Laws:
𝑎3

𝑇2
= C

𝑎

𝑇
= Cth. , exp.✗✗
✓

same motion ⇒
⇒ shape = potential

description of sheet curvature

ℎ = 𝐶 ⋅ ln 𝑟/𝑅0

✓

C
o

n
cl

u
si

o
n

T
h

an
k 

yo
u

 fo
r 

yo
u

r 
at

te
n

ti
o

n
!

31
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✓

same equations as gravity, but 2D

Laws:
𝑎3

𝑇2
= C

𝑎

𝑇
= Cth. , exp.✗✗
✓

same motion ⇒
⇒ shape = potential

description of sheet curvature

ℎ = 𝐶 ⋅ ln 𝑟/𝑅0

✓

dynamics:

32

T
h

an
k 

yo
u

 fo
r 

yo
u

r 
at

te
n

ti
o

n
!

𝐸𝑘

𝐸𝑝

Σ

𝐹 = 𝜅𝑚
𝑀𝑚

𝑟
; 𝜅𝑚 = 0.053

m2

kg⋅s2
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APPENDIX

gravity, rubber sheet: equations

gravity in N-D

derivation of 3rd Law

small slopes approximation
33
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𝜙:  Poisson

• intensity 𝒈 =
𝑭

𝑚
: gradient of potential

𝒈(𝒓) = −𝛻𝜙(𝒓)

• Gauss s Theorem:
𝛻 ∙ 𝒈(𝒓) = −4𝜋𝜅𝜌(𝑟)

• together: Poisson equation

𝛻 ∙ −𝛻𝜙 𝒓 = −4𝜋𝜅𝜌 𝑟

Δ𝜙(𝒓) = 4𝜋𝜅𝜌(𝑟)

34
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𝜙: Boundary Conditions, 𝜌(𝒓)

• φ ∞ = const., therefore
𝜕𝑛𝜑|𝑆 = 0

• 𝜌: point mass in our measurements:
𝜌 𝒓 = 𝑚 𝛿 𝒓 ,

where 𝛿 𝒓 is -function
( −∞
∞
𝛿 𝑥 d𝑥 = 1, ∀𝑥 ∈ 𝑅 − 0 : 𝛿 𝑥 = 0)

35

Δ𝜙(𝒓) = 4𝜋𝜅𝜌(𝑟)
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ℎ:  Poisson

• for 𝜃 ≪ 1 : sin 𝜃 ≈ tan 𝜃 ≈
𝜕ℎ

𝜕𝑥
, then

∆𝐹 = 𝑘 ∆𝑦
𝜕ℎ2
𝜕𝑥
−
𝜕ℎ1
𝜕𝑥

= 𝑘∆𝑦
𝜕2ℎ

𝜕𝑥2
∆𝑥

36

• net force causing the rubber sheet 
to bend:

∆𝐹 = 𝑘 ∆𝑦 sin 𝜃2 − 𝑘 ∆𝑦 sin 𝜃1
Δ𝐹 = 𝑘∆𝑦(sin 𝜃2 − sin 𝜃1)

h

𝑘: 
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ℎ:  Poisson

• deformation is caused by gravity:
∆𝐹 = 𝑔 𝜌∆𝑥∆y

• substitute Δ𝐹 = 𝑘∆𝑦
𝜕2ℎ

𝜕𝑥2
∆𝑥:

𝜕2ℎ

𝜕𝑥2
=

∆𝐹

𝑘∆𝑥 ∆𝑦
=
𝜌𝑔

𝑘

• generalization (vector fields):

∆ℎ(𝒓) =
𝑔

𝑘
σ(𝒓)

37
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ℎ: Boundary Conditions, 𝜌(𝒓)

• φ ∞ = const., therefore
𝜕𝑛ℎ|∞ = 0

• 𝜌: area density negligible in comparison to 
mass of ball 𝑚, therefore approximated by -
function:

𝜌 𝒓 = 𝑚 𝛿 𝒓

38

Δ𝜙(𝒓) =
𝑔

𝑘
𝜌(𝑟)
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Rubber Sheet vs. Gravity

• two differential equations of the same type, 
in the same region

– von Neumann boundary conditions: 
𝜕𝑛𝑓

𝜕𝑟
= 0

• in a closed region such differential equations 
have at most one solution (Dirichlet

unique solution theorem)

character of solutions for 𝜙 and ℎ will be the 
same 𝜙 ∝ ℎ

39
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The Form of Newton s Law of 
Gravitation

• why 𝐹𝑔 ∝
1

𝑟2
?

– Gauss :  𝜕𝑉𝒈 ⋅ d𝑨 = −4𝜋𝜅𝑀

(gravitational flux through any closed surface is 
proportional to the enclosed mass)

– special case: spherical symmetry, point mass:

40

𝑔 ⋅ 𝐴𝑠 = −4𝜋𝜅𝑀 ; 𝐴𝑠 = 4𝜋𝑟2

𝑔 = −
4𝜋𝜅𝑀

𝐴𝑠
= −

𝜅𝑀

𝑟2
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The Form of Newton s Law of 
Gravitation

• why 𝐹𝑔 ∝
1

𝑟2
?

– Gauss :  𝜕𝑉𝒈 ⋅ d𝑨 = −4𝜋𝜅𝑀

(gravitational flux through any closed surface is 
proportional to the enclosed mass)

– special case: spherical symmetry, point mass:

– holds in N dimensions, too

41

𝑔 = −
4𝜋𝜅𝑀

𝐴𝑠
; 𝐴𝑠 ∝ 𝑟

𝑁−1 𝑔 ∝ −
𝜅𝑀

𝑟(𝑁−1)
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Gravitational Force in 2D

• 𝑔 = −
2𝜅𝑀

𝑟

• potential 𝜙 𝒓 =  𝑟
∞
𝒈 d𝒓

42

= 𝑔 log 𝑟 + C
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Derivation of the 3rd Law

standard - 3D

𝜅𝑚
𝑀𝑚

𝑟2
= 𝑚𝜔2𝑟

𝑟3

𝑇2
=
𝜅𝑚𝑀

4𝜋2

𝑟3

𝑇2
=
1

4𝜋2
𝜅𝑀

2D rubber sheet

𝜅𝑚
𝑀𝑚

𝑟
= 𝑚𝜔2𝑟

𝑟2

𝑇2
=
𝜅𝑚𝑀

4𝜋2

𝑟

𝑇
=
1

2𝜋
𝜅𝑚𝑀

43

𝐹𝑔 = 𝐹𝑐𝑓

substitute 𝜔 =
2𝜋

𝑇
:
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Large slopes do not work well

if the slope is too big, 
the projected force 
will not be 
monotonous

44

we will work only with small slopes

+ part of 𝐸𝑘
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45

we will work only with small slopes
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⇒ we can assume:

– uniform tension

– sin 𝜃 ≈ 𝜃 ≈ tan𝜙 =
Δℎ

Δ𝑥

– cos 𝜃 ≈ 1

– experiment:

 no inelastic (permanent) deformation of membrane

 ∝ deformation)

46

we will work only with small slopes


