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2 Elastic Space

The dynamics and apparent interactions of
massive balls rolling on a stretched horizontal
membrane are often used to illustrate
gravitation. Investigate the system further. Is it
possible to define and measure the apparent
“gravitational constant” in such a “world”?
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The Correct Shape

both systems:
Ek "4 Ep
rubber sheet gravity

— —
va

1
h(r) = —tnM — =: L

grav. potential

h(r): membrane height at radius r




Is the Shape Correct?




Is the Shape Correct?

1

IS It only an experimental pr_o%lé?n (.e.
Imperfect membrane), or is it something
fundamental?

N .




PHYSICS OF A RUBBER SHEET

What Does Rubber Do?
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Description of Rubber Sheet
Curvature

 based on Feynman, R. P.: The Feynman Lectures On
Physics, Vol. 2, Ch. 12:

g
V2h ==
h kp

/ valid for small deformations only;

Laplace operator

derivation in Appendix

membrane height at radius r
distribution of mass
membrane stiffness

. gravitational acceleration

QIR




Rubber Sheet vs. Gravity

rubber sheet shape gravitational potential

Veh =

g
P
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Rubber Sheet vs. Gravity

rubber sheet shape — gravitational potential
I =41
k o j@

(derivations in Appendix)
Laplace operator

h: membrane height p. distribution of mass
p. distribution of mass ¢: gravitational potential
k: membrane stiffness K. gravitational constant

g. gravitational acceleration




Rubber Sheet vs. Gravity

rubber sheet shape — gravitational potential




rubber sheet shape - — gravitational potential

3D




GRAVITY IN 2 DIMENSIONS

Rubber Sheet and Gravity Equivalence
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The Form of Newton’s Law of
Gravitation

1 1

— depends on the dimensionality of the world
informal reasoning: F; o« intensity

: . . 1
— Intensity In 3D « ~

- Intensity in 2D X = Fy « L
r r

(formal derivation based on Divergence Theorem in Appendix)

N . S
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Ro
2D rubber sheet assumesthe,gorrect shape

to model 2D gravity kgeverned by the same

equations! I

h=C-In <L> /



FINDING THE GRAVITATIONAL
CONSTANT
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Where to get k,,,?

» from the membrane shape (potential):

_ r (by solving 72h = 2 p using
ql) (T) T ZKTI’LM In (RO) a Green’s function)k




Experiment: changing mass, keeping
diameter

small steel ball

strong
magnet

additional "' R
weights —— - ;ﬂ-
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Dynamics

» the shape Is correct = approx. works

* but: energy losses (friction / rolling
resistance)

. o of mechanical

+ elasticity: finite speed of “gravitational interaction”

R . S
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m=1g,d =12 mm m=22¢g d=16 mm
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Ellipses?

* Bertrand's theorem: stable, closed orbits can
only exist If ¢ « —%or ¢ < r? = no closed
orbits here

® pericenter
—trajectory

M = 18kg
m=97g
Tinit = 13.4 mm

Johnson, Porter Wear (2010). Classical Mechanics With Applications
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Kepler’s Laws

15t Law 2nd | aw 3rd | aw

Planet

X

no elliptical orbits

N . S
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Kepler’s Laws

15t Law ALY 3rd | aw

Planet "‘,.t-‘1

St

theoretically:\/

X (conservation of
momentum)

no elliptical orbits  experiment: X
(energy losses - friction)

R . S
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Kepler’s Laws

15T Law 2nd | aw 3rd Law
(for circular orbits)

Planet "‘,.t-‘1

\! = const. for v
j orbiting same mass

force equilibrium (F, =
theoretically:v/  Tw?a)
(conservation of
X momentum) a@ q \/
no elliptical orbits ~ experiment: X 73 - = const.

TZ
(energy losses - friction)

#
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N same motion =

= shape = potential

|
ol
\

ﬁ

ln ‘ description of sheet curvature

PE— S2TE equations as gravity, but 2D

: : F =k, MTm; K, = 0.053kg tm?s?2

dynamics: Kepler’s Laws:

Thank YOU for your attention:
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same motion =

= = shape = potential
= y
5 description of sheet curvature
© |
§ ‘ - same equations as gravity, but 2D
S [rp— : $
M T - Mm. m?
s [ R
> | e
2 | dynamics: Kep/er’s LaWS'
< u =»
= . mmmm th./, exp. X —

a
T

t 32
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APPENDIX

> gravity, rubber sheet: equations
> gravity in N-D

> derivation of Kepler’s 3" Law

> small slopes approximation
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¢: Poisson’s Equation

* Intensity g = % . gradient of potential

gr)=—-Vo(r)
 (Gauss’s Theorem:
V-g(r) = —4mkp(r)
* together: Poisson’s equation
V- (=Vo(r)) = —4nrp(r)

Ap(r) = 4mrp(r)

N .
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¢:. Boundary Conditions, p(7)

Ap(r) = 4mrp(r)

* (o) = const., therefore
Onpls =0

» p: point mass in our measurements:
p(r) =m&(r),

where 6 () is 8-function
(fjooo d(x)dx=1,Vx € R —-{0}:6(x) = 0)

N - S




S
h: Poisson’s Equation

» net force causing the rubber sheet 6 T,

to bend: py B

| 3
AF = k Aysin 8, — k Ay sin 6, : SHEET
AF = kAy(sinf, — sin8,)

X
dh

* for@ <<1:sin9ztan0za,then
AF = k A Oh, O = kA 07h A
B y(ax 6x)_ yé‘xz x

k: “surface tension” (force per length)

R .
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h: Poisson’s Equation

 deformation is caused by gravity:
AF = g pAxAy

. 0°%h _
* substitute AF = kAy — Ax:

0%h AF 04

dx?  khx Ay "k
* generalization (vector fields):

AR(r) = %G(r)

N . S
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h: Boundary Conditions, p(7)

g
Ap(r) =7 p(r)
* (o) = const., therefore
Ophl|e =0

* p: area density negligible in comparison to
mass of ball m, therefore approximated by o6-
function:

p(r) =mé(r)

N . S




Rubber Sheet vs. Gravity

* two differential equations of the same type,
In the same region

—von Neumann boundary conditions: 22 ar =0

* In a closed region such differential equations

have at most one solution (Dirichlet’s problem,
unique solution theorem)

> character of solutions for ¢ and h will be the
same - ¢ X h

N . S



The Form of Newton’s Law of

Gravitation

* why F, « -

r2
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— Gauss’s Law: gﬁﬁav g - dA = —4nmkM

(gravitational flux through any closed surface is
proportional to the enclosed mass)

— special case: spherical symmetry, point mass:
g A, = —4nKM ; A, = 4mr?

g:

4tk M |

As

KM

72

R . S
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The Form of Newton’s Law of

Gravitation
1
— Gauss’s Law: gﬁﬁav g - dA = —4nmkM

(gravitational flux through any closed surface is
proportional to the enclosed mass)

— special case: spherical symmetry, point mass:
— holds in N dimensions, too

AmtkM y Vo1 o KM
_ A s X T =) ~(N—1)

N . S

g:




Gravitational Force in 2D

2KM
r

og:

* potential ¢p(r) = froog dr = glogr +C




S
Derivation of the 3@ Kepler’s Law

fg = Fer

standard - 3D 2D rubber sheet

Mm 5 Mm 5
Kmr—2=ma)r Km7=ma)r
substitute w = 2?”:

r3  k,M r*  k,M
T2~ 472 T2~ 42

73 1 r 1

T2 = 4—7_[2KM T = % KmM

N .



Large slopes do not work well

If the slope Is too big,
the projected force
will not be
monotonous

+ part of £}, > vertical motion!

Il

we will work only with small sloies
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we will work only with small sloies
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we will work only with small slopes

— We Cadln assume.
— uniform tension

. Ah
—sinf = 0 =~ tan¢g = e
—cosf = 1
— experiment:

= no inelastic (permanent) deformation of membrane
* Hooke’s law holds (force o« deformation)

N . S



