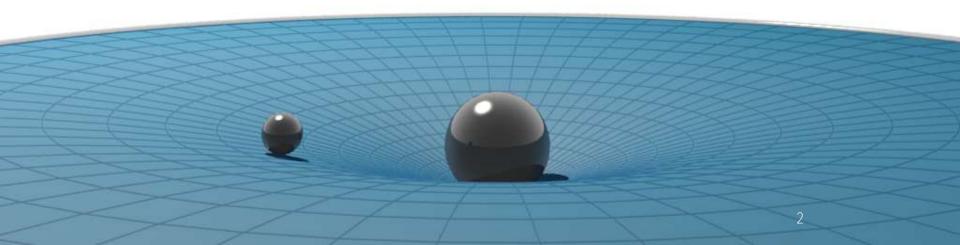


SLOVAKIA

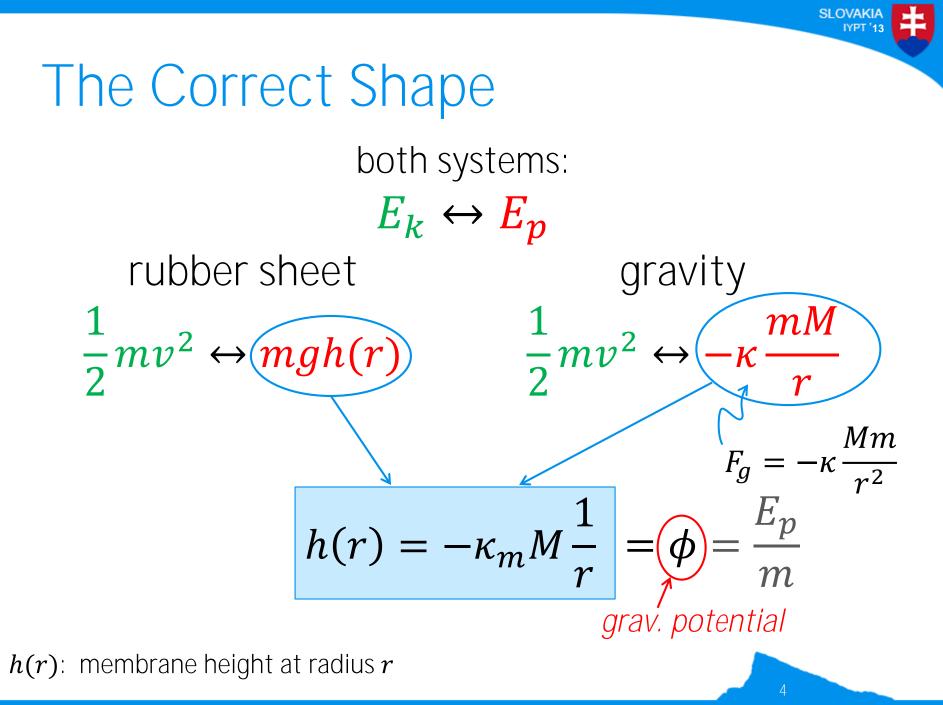
Kamila Součková

2 Elastic Space

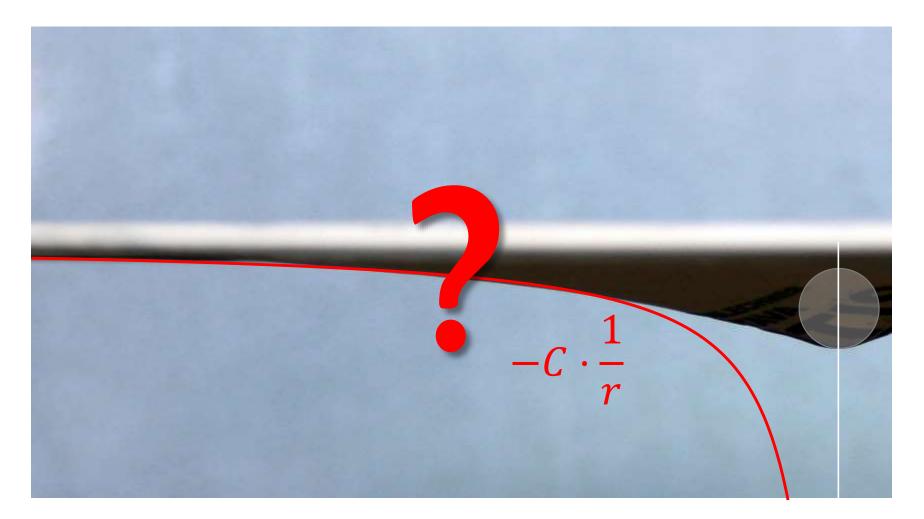
The dynamics and apparent interactions of massive balls rolling on a stretched horizontal membrane are often used to illustrate gravitation. Investigate the system further. Is it possible to define and measure the apparent "gravitational constant" in such a "world"?



..."illustrate gravitation"...



Is the Shape Correct?



5

Is the Shape Correct?

is it only an experimental problem (i.e. imperfect membrane), or is it something fundamental?

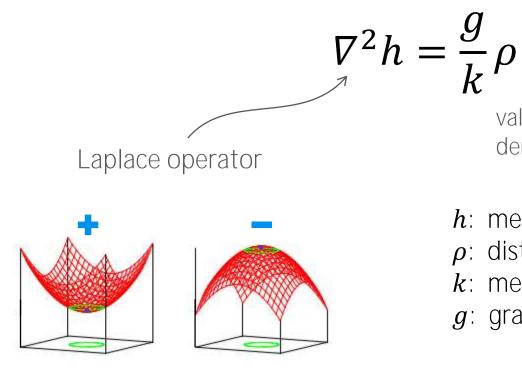
SI OVAK

SLOVAKIA

What Does Rubber Do?

Description of Rubber Sheet Curvature

• based on Feynman, R. P.: The Feynman Lectures On Physics, Vol. 2, Ch. 12:



valid for small deformations only; derivation in Appendix

- h: membrane height at radius r
- ho: distribution of mass
- k: membrane stiffness
- g: gravitational acceleration

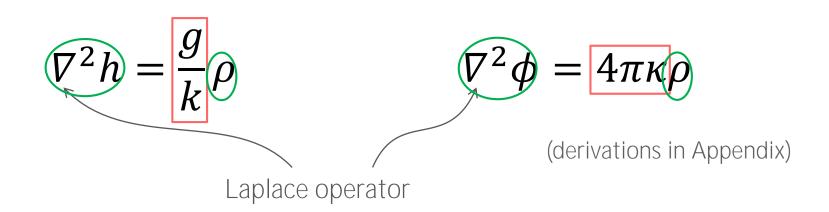
Rubber Sheet vs. Gravity

rubber sheet shape

gravitational potential

$$\nabla^2 h = \frac{g}{k}\rho$$

rubber sheet shape 🗧 gravitational potential

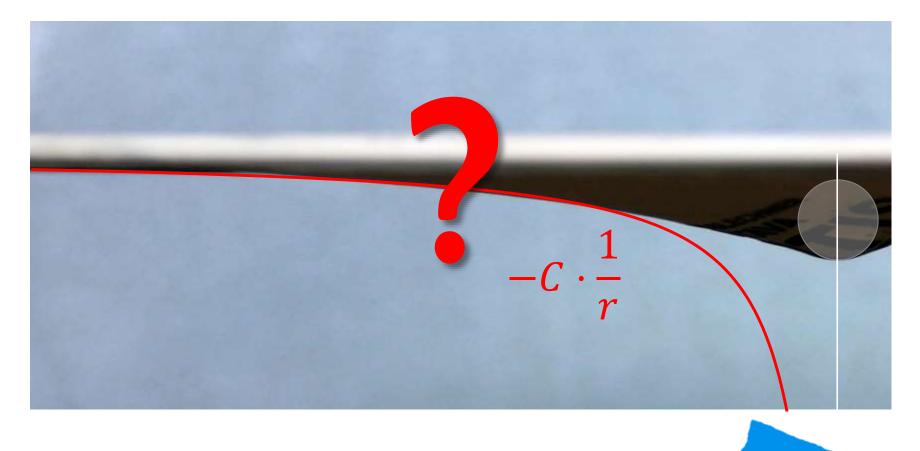


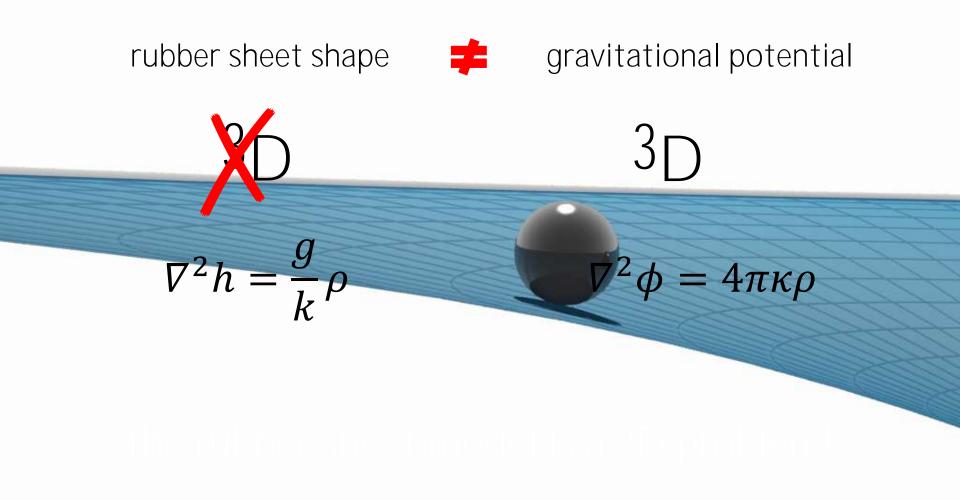
- *h*: membrane height
- ho: distribution of mass
- k: membrane stiffness
- g: gravitational acceleration

- ho: distribution of mass
- $\boldsymbol{\phi}$: gravitational potential
- κ : gravitational constant

rubber sheet shape

gravitational potential





Rubber Sheet and Gravity Equivalence

The Form of Newton's Law of Gravitation

• why
$$F_g \propto \frac{1}{r^2} \Rightarrow \phi \propto -\frac{1}{r}?$$

- depends on the dimensionality of the world

informal reasoning: $F_g \propto$ intensity

- intensity in 3D
$$\propto \frac{1}{r^2}$$

- intensity in 2D $\propto \frac{1}{r} \implies F_g \propto \frac{1}{r}$

(formal derivation based on Divergence Theorem in Appendix)

14

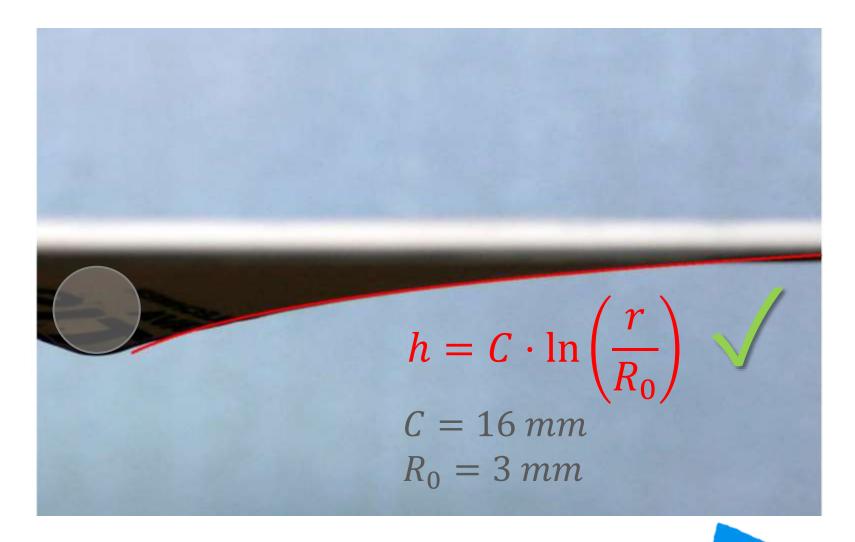
2D $F_g \propto \frac{1}{r}$

 $2D: F_g \propto \frac{1}{r} \Rightarrow \phi \propto \log \frac{r}{R_0}$

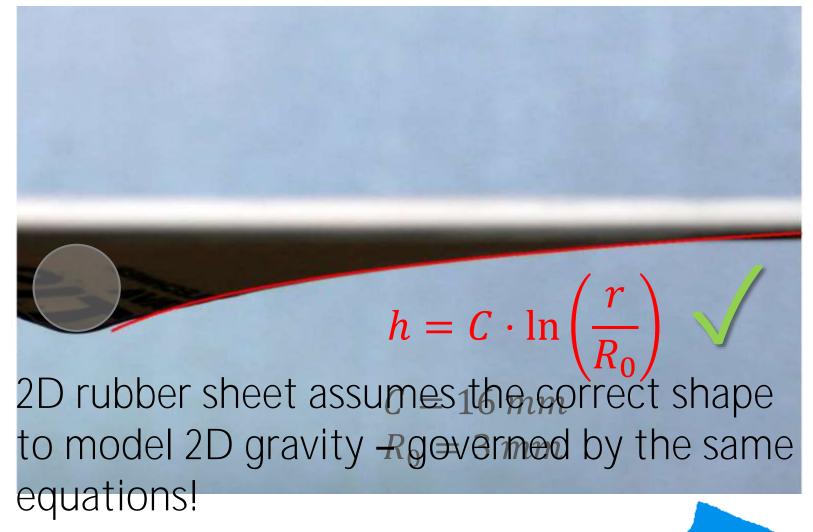


SLOVAKIA IYPT '13

 $2D: F_g \propto \frac{1}{r} \Rightarrow \phi \propto \log \frac{r}{R_0}$

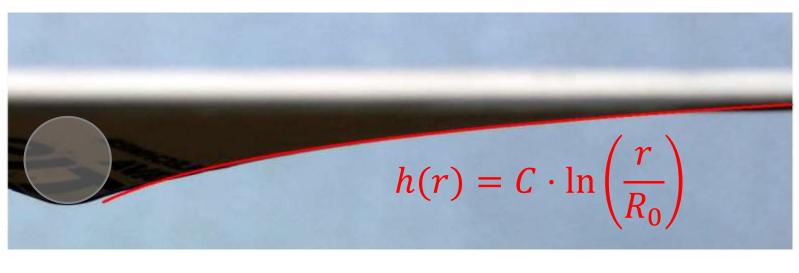


 $2D: F_g \propto \frac{1}{r} \Rightarrow \phi \propto \log \frac{r}{R_0}$



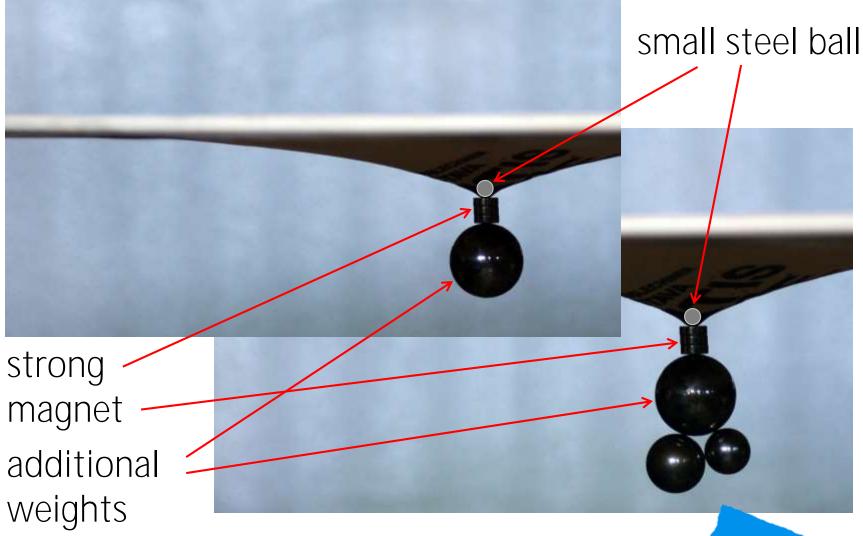
Where to get κ_m ?

• from the membrane shape (potential): $\phi(r) = 2\kappa_m M \ln\left(\frac{r}{R_0}\right) \qquad \text{(by solving } \nabla^2 h = \frac{g}{k}\rho \text{ using } a \text{ Green's function)}$

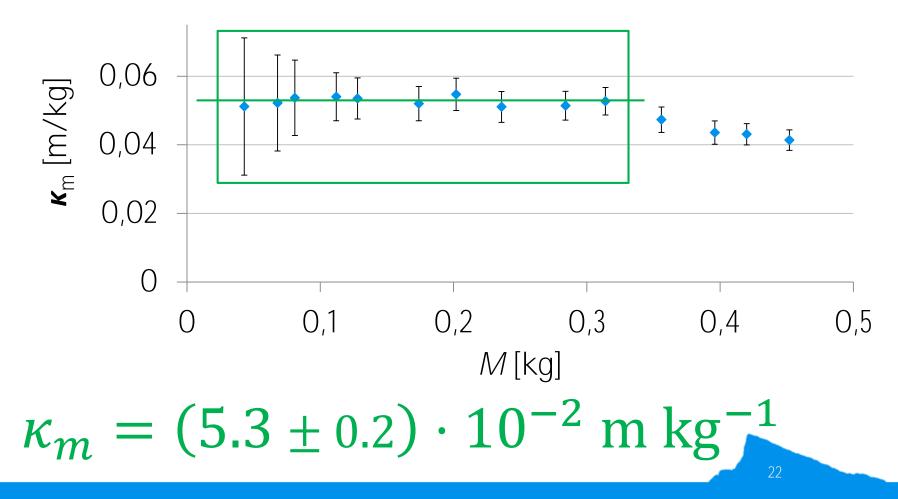


 $\rightarrow \kappa_m = \frac{c}{2M}$

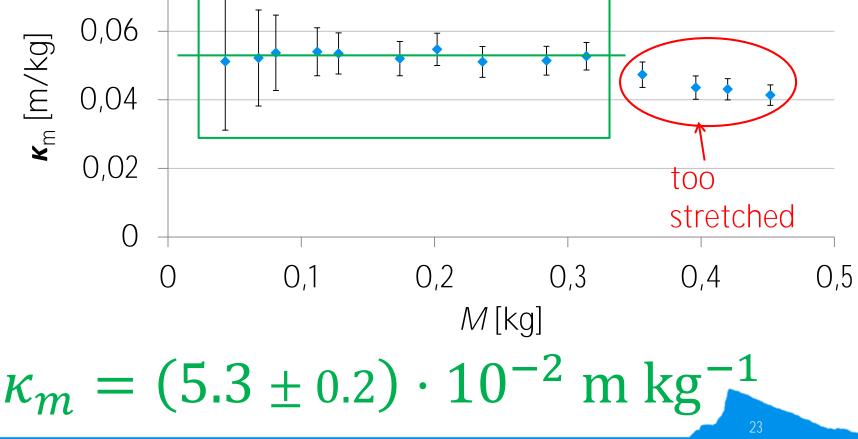
Experiment: changing mass, keeping diameter



Results $u(r) = C \cdot \ln\left(\frac{r}{R_0}\right) \implies \kappa_m = \frac{C}{2M}$



SLOVAKIA IYPT'13 **Results** $u(r) = C \cdot \ln\left(\frac{r}{R_0}\right) \quad \Longrightarrow \quad \kappa_m = \frac{C}{2M}$

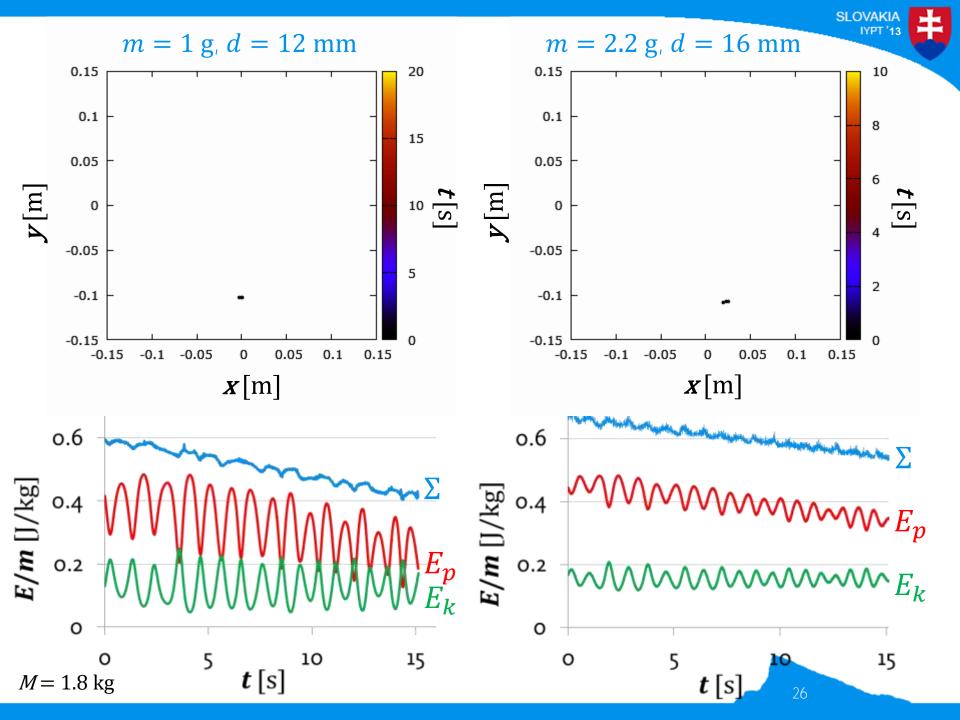


DYNAMICS

Dynamics

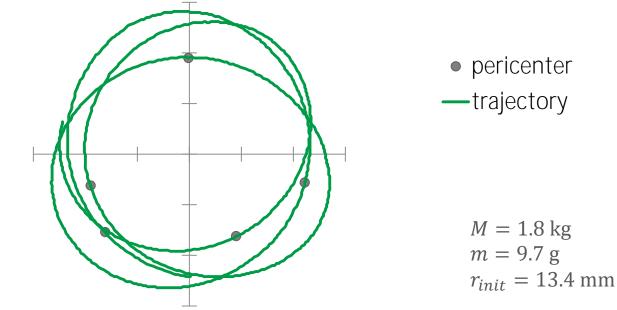
- the shape is correct \Rightarrow approx. works
- but: energy losses (friction / rolling resistance)
 - \Rightarrow conservation of mechanical energy

+ elasticity: finite speed of "gravitational interaction"



Ellipses?

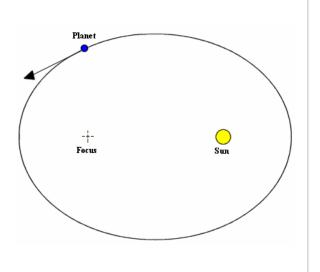
• Bertrand's theorem: stable, closed orbits can only exist if $\phi \propto -\frac{1}{r}$ or $\phi \propto r^2 \Rightarrow$ no closed orbits here



Johnson, Porter Wear (2010). Classical Mechanics With Applications

Kepler's Laws

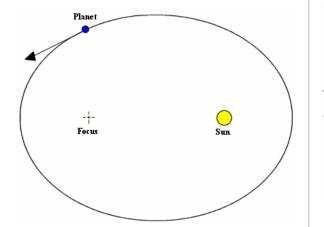
1st Law



no elliptical orbits

2nd Law

Kepler's Laws



1st law

no elliptical orbits

2nd Law Α t Տաո theoretically: \checkmark (conservation of momentum) experiment: X (energy losses – friction)

Kepler's Laws

1st Law

no elliptical orbits

theoretically:√ (conservation of momentum) *experiment*: X (energy losses – friction)

t

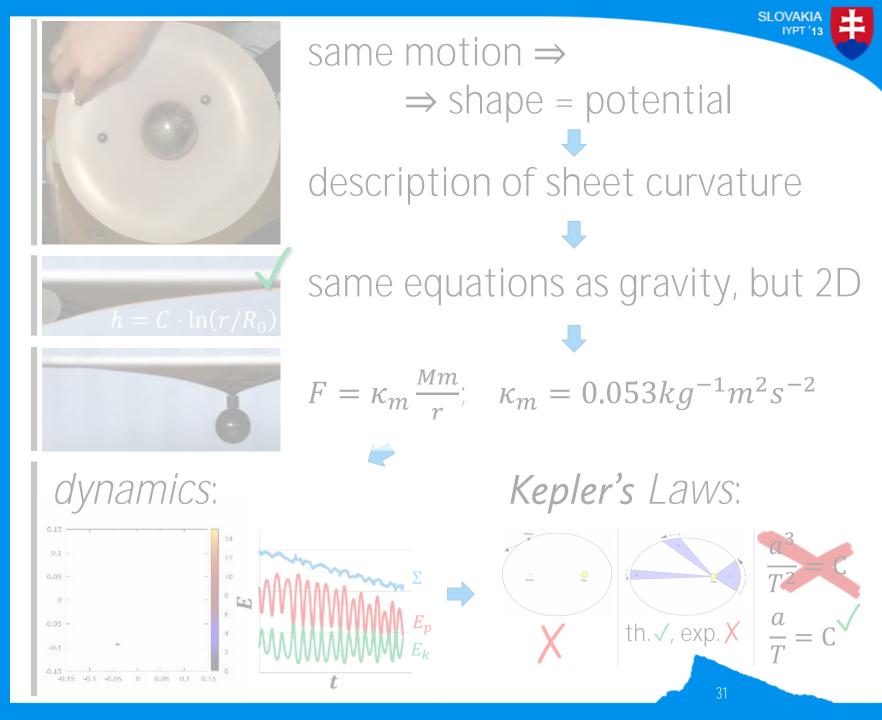
2nd law

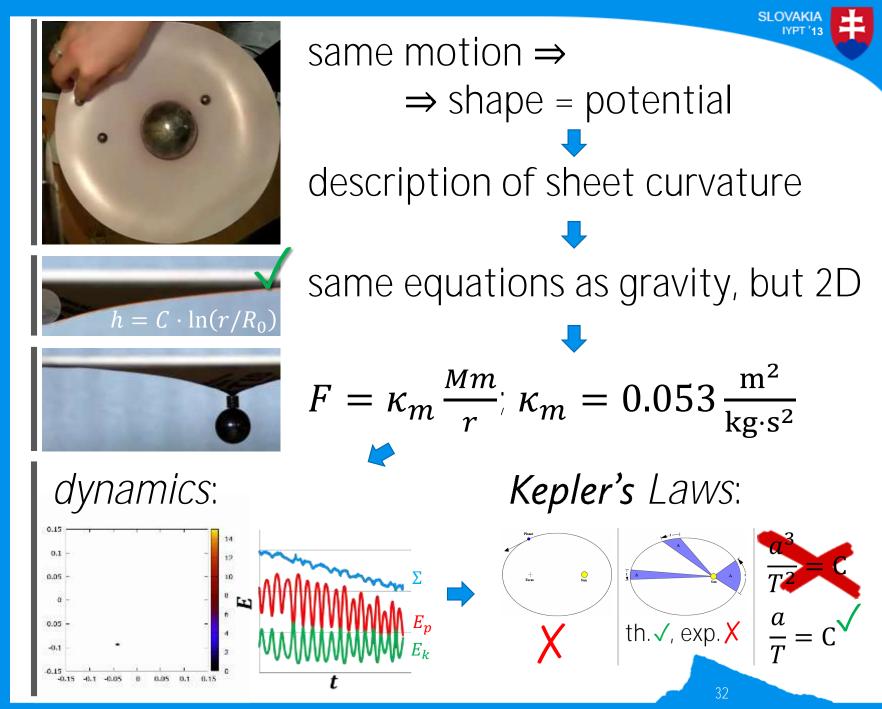
Α

Տառ

3rd Law (for circular orbits) const. for ∀ orbiting same mass force equilibrium ($F_g =$ $m\omega^2 a)$ $\frac{a^2}{T^2} \propto \frac{a}{T} = \text{const.}$

30





APPENDIX

- → gravity, rubber sheet: equations
- → gravity in N-D
- → derivation of Kepler's 3rd Law
- → <u>small slopes approximation</u>

φ: Poisson's Equation

- intensity $m{g} = rac{F}{m}$: gradient of potential $m{g}(m{r}) = abla \phi(m{r})$
- Gauss's Theorem:

$$\nabla \cdot \boldsymbol{g}(\boldsymbol{r}) = -4\pi\kappa\rho(r)$$

• together: Poisson's equation $\nabla \cdot (-\nabla \phi(\mathbf{r})) = -4\pi \kappa \rho(\mathbf{r})$

$$\Delta \phi(\boldsymbol{r}) = 4\pi \kappa \rho(r)$$

$$\Delta \phi(\mathbf{r}) = 4\pi \kappa \rho(r)$$

•
$$\varphi(\infty) = \text{const.}$$
, therefore
 $\partial_n \varphi|_S = 0$

• ρ : point mass in our measurements:

$$\rho(\mathbf{r}) = m \,\delta(\mathbf{r}),$$

where $\delta(\mathbf{r})$ is δ -function
 $\left(\int_{-\infty}^{\infty} \delta(x) \, \mathrm{d}x = 1, \, \forall x \in R - \{0\}: \delta(x) = 0\right)$

h: Poisson's Equation

 net force causing the rubber sheet to bend: $\Delta F = k \,\Delta y \sin \theta_2 - k \,\Delta y \sin \theta_1$ SHEET h $\Delta F = k \Delta y (\sin \theta_2 - \sin \theta_1)$ • for $\theta \ll 1$: $\sin \theta \approx \tan \theta \approx \frac{\partial h}{\partial x}$, then $\Delta F = k \,\Delta y \left(\frac{\partial h_2}{\partial x} - \frac{\partial h_1}{\partial x}\right) = k \Delta y \frac{\partial^2 h}{\partial x^2} \,\Delta x$

k: "surface tension" (force per length)

h: Poisson's Equation

• deformation is caused by gravity: $\Delta F = g \ \rho \Delta x \Delta y$

- substitute $\Delta F = k \Delta y \frac{\partial^2 h}{\partial x^2} \Delta x$: $\frac{\partial^2 h}{\partial x^2} = \frac{\Delta F}{k \Delta x \Delta y} = \frac{\rho g}{k}$
- generalization (vector fields):

$$\Delta h(\boldsymbol{r}) = \frac{g}{k} \sigma(\boldsymbol{r})$$

h: Boundary Conditions, $\rho(r)$

$$\Delta \phi(\mathbf{r}) = \frac{g}{k} \rho(r)$$

• $\phi(\infty) = \text{const.}$, therefore
 $\partial_n h|_{\infty} = 0$

ρ: area density negligible in comparison to mass of ball *m*, therefore approximated by δ-function:

$$\rho(\mathbf{r}) = m \,\delta(\mathbf{r})$$

Rubber Sheet vs. Gravity

 two differential equations of the same type, in the same region

- von Neumann boundary conditions: $\frac{\partial_n f}{\partial r} = 0$

- in a closed region such differential equations have at most one solution (Dirichlet's problem, unique solution theorem)
- → character of solutions for ϕ and h will be the same $\phi \propto h$

The Form of Newton's Law of Gravitation

- why $F_g \propto \frac{1}{r^2}$?
 - Gauss's Law: $\oiint_{\partial V} \boldsymbol{g} \cdot d\boldsymbol{A} = -4\pi\kappa M$

(*gravitational flux* through any closed surface is proportional to the enclosed mass)

- special case: spherical symmetry, point mass:

$$g \cdot A_s = -4\pi\kappa M$$
; $A_s = 4\pi r^2$

$$g = -\frac{4\pi\kappa M}{A_s} = -\frac{\kappa M}{r^2}$$

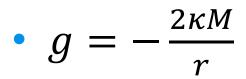
The Form of Newton's Law of Gravitation

- why $F_g \propto \frac{1}{r^2}$?
 - Gauss's Law: $\oiint_{\partial V} \boldsymbol{g} \cdot d\boldsymbol{A} = -4\pi\kappa M$

(*gravitational flux* through any closed surface is proportional to the enclosed mass)

- special case: spherical symmetry, point mass:
- holds in N dimensions, too

$$g = -\frac{4\pi\kappa M}{A_s}$$
; $A_s \propto r^{N-1} \longrightarrow g \propto -\frac{\kappa M}{r^{(N-1)}}$



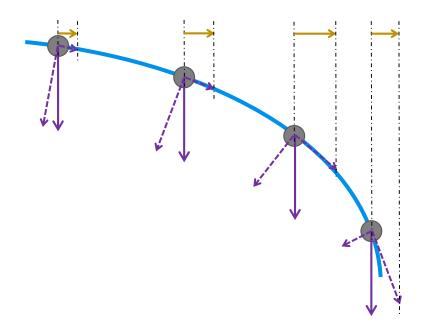
• potential $\phi(\mathbf{r}) = \int_r^\infty \mathbf{g} \, \mathrm{d}\mathbf{r} = g \log r + C$

Derivation of the 3rd Kepler's Law

 $F_g = F_{cf}$

standard - 3D	2D rubber sheet
$\kappa_m \frac{Mm}{r^2} = m\omega^2 r$	$\kappa_m \frac{Mm}{r} = m\omega^2 r$
sub	stitute $\omega = \frac{2\pi}{T}$:
$\frac{r^3}{T^2} = \frac{\kappa_m M}{4\pi^2}$	$\frac{r^2}{T^2} = \frac{\kappa_m M}{4\pi^2}$
r^3 1	r 1
$\frac{r}{T^2} = \frac{1}{4\pi^2} \kappa M$	$\frac{1}{T} = \frac{1}{2\pi} \sqrt{\kappa_m M}$

Large slopes do not work well



if the slope is too big, the projected force will not be monotonous

SLOVAK

+ part of $E_k \rightarrow$ vertical motion! we will work only with small slopes

we will work only with small slopes

- \Rightarrow we can assume:
 - uniform tension

$$-\sin\theta \approx \theta \approx \tan\phi = \frac{\Delta h}{\Delta x}$$
$$-\cos\theta \approx 1$$

- experiment:

- no inelastic (permanent) deformation of membrane
- Hooke's law holds (force ∝ deformation)