

Marco Bodnár

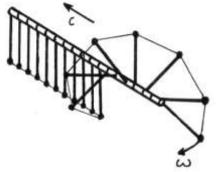
### Task

A chain of similar pendula is mounted equidistantly along a horizontal axis, with adjacent pendula being connected with light strings. Each pendulum can rotate about the axis but can not move sideways (see figure).

 Investigate the propagation of a deflection along such a chain.

 What is the speed for a solitary wave, when each pendulum undergoes an entire 360° revolution?







A chain of similar pendula is mounted equidistantly along a horizontal axis, with adjacent pendula being connected with light strings. Each pendulum can rotate about the axis but can not move sideways (see figure).



SLOVAKI

Equidistantly mounted pendula U All strings are straightened equally

A chain of similar pendula is mounted equidistantly along a horizontal axis, with adjacent pendula being connected with light strings. Each pendulum can rotate about the axis but can not move sideways (see figure).

Equidistantly mounted pendula

All strings are straightened equally



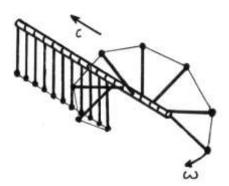
Using rubber as string





SLOVAKI

A chain of similar pendula is mounted equidistantly along a horizontal axis, with adjacent pendula being connected with light strings. Each pendulum can rotate about the axis but can not move sideways (see figure).

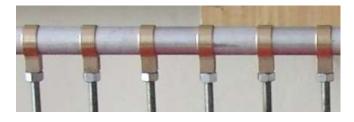


SLOVAKI

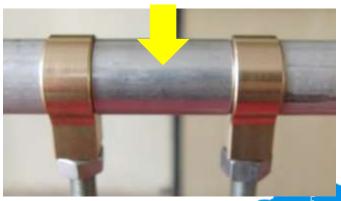
#### Equidistantly mounted pendula U All strings are straightened equally

Using rubber as string

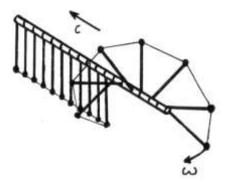




#### Small tube between pendula



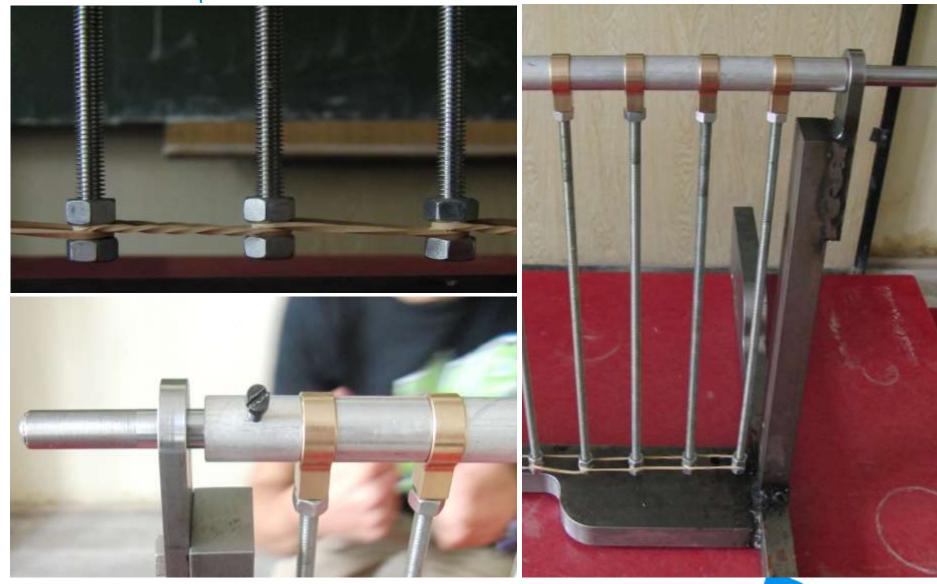
A chain of similar pendula is mounted equidistantly along a horizontal axis, with adjacent pendula being connected with light strings. Each pendulum can rotate about the axis but can not move sideways (see figure).



SLOVAK



Chain of pendula

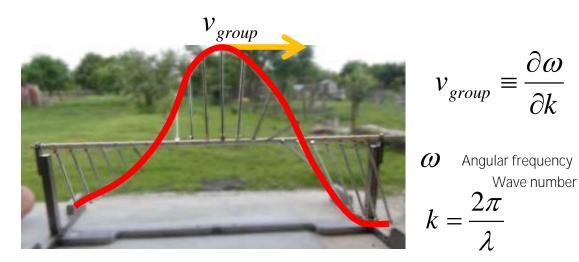


SLOVAKIA IYPT '13

# Which speed?

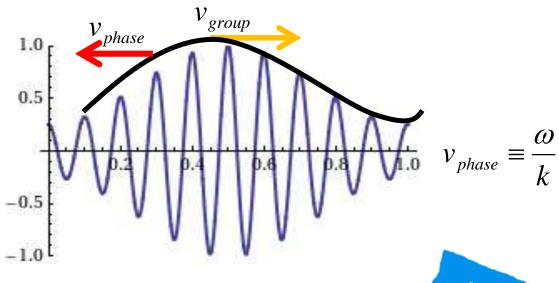
Group velocity

- Velocity of overall shape
- Velocity of the information



#### Phase velocity

- Velocity of phase
- Can be higher than velocity of information or even has different direction

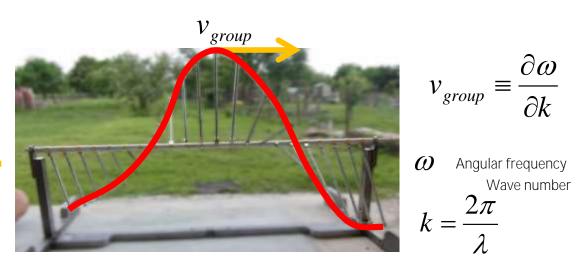


SLOVAKIA IYPT '13

# Which speed?

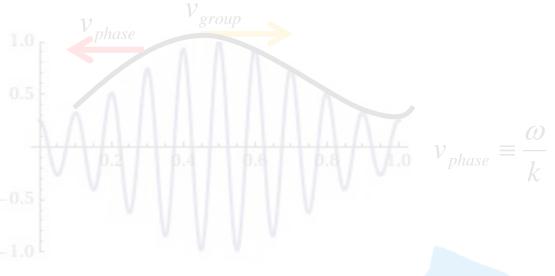
Group velocity

- Velocity of overall shape
- Velocity of the information



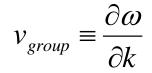
Phase velocity

- Velocity of phase
- Can be higher than velocity of information or even has different direction

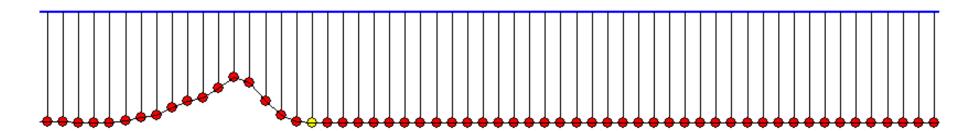


# Dispersion

Property of a given system – Group velocity is wavelength depended

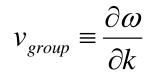


SLOVAKIA IYPT '13

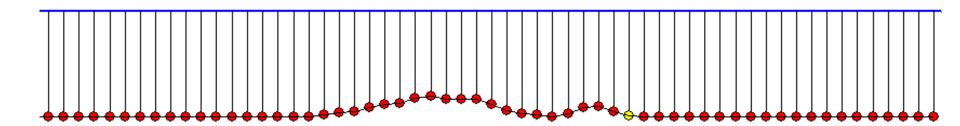


# Dispersion

Property of a given system – Group velocity is wavelength depended



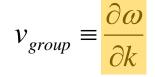
SLOVAKIA IYPT '13



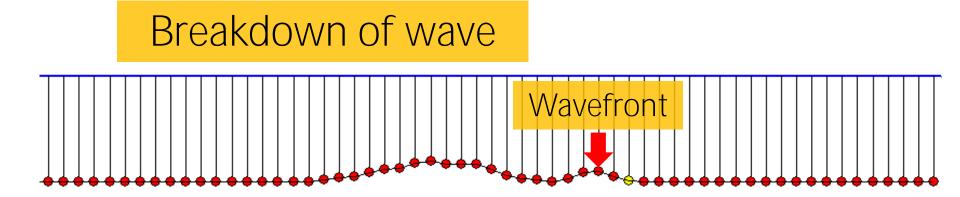


# Dispersion

Property of a given system – Group velocity is wavelength depended



SLOVAKIA



# What is solitary wave?

#### What is the speed for a solitary wave, when each pendulum undergoes an entire 360° revolution?



Photo from Physics of solitons. M. Peyrard, T. Dauxios, *Cambridge University Press (2010), ISBN 9780521143608* 



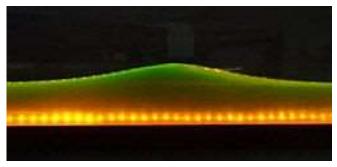
Place of first observed solitary wave (soliton) (Union Canal, Scotland)

**SLOVAKI** 

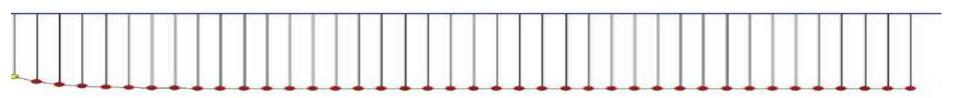
Solitary wave (Soliton) on pendula chain

# Soliton (Solitary wave)

- Wave which maintains its shape and moves at constant speed
- Dispersion is balanced by nonlinear effects
- Nonlinear wave  $f_{(a+b)} \neq f_{(a)} + f_{(b)}$ (Principle of superposition doesn't hold)
- Behaves like "particle" (Localized)
- Different shapes, sizes and velocities



https://en.wikipedia.org/wiki/File:Soliton\_hydro.jpg



SLOVAKIA IYPT '13



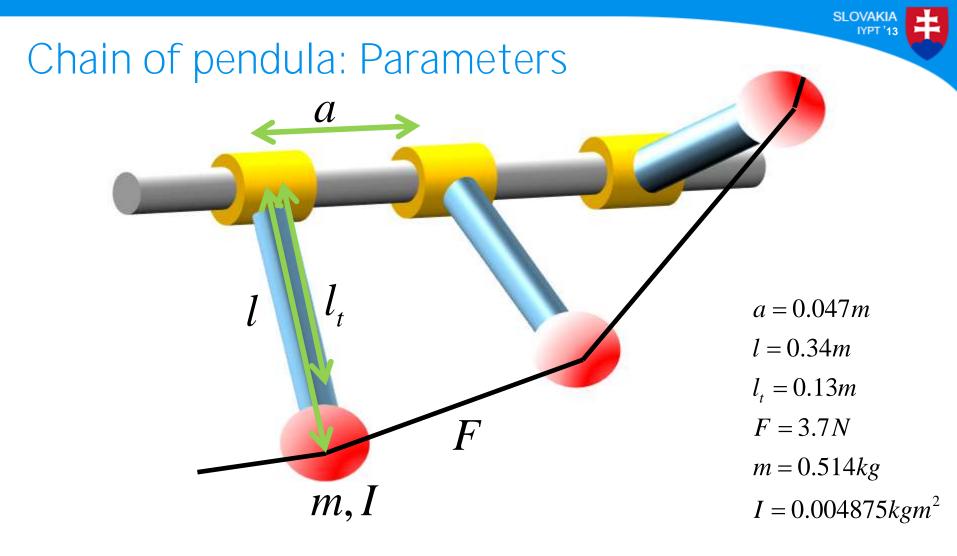
SLOVAKIA

# PHYSICS OF CHAIN OF PENDULA

# What is going on?

First pendulum is rotated Energy is stored to the deformation of springs Are you satisfied with this 1<sup>st</sup> pendulum undergoes 360° explanation? We aren't. Kinetic energy is transferred along chain by springs Gravity returns pendula to the static state Reflection on Free end Example of Chain behavior (280 fps)

SLOVAKIA



- *a* Spacing between pendula
- l Length of pendulum
- $l_t$  Position of centre of mass
- F String force of prestression
- *m* Mass of pendulum

Ι

Moment of inertia around bar

# Equation of motion

Kinetic energy  $T = \sum_{i=1}^{N} \frac{1}{2} I \dot{\theta}_i^2$ 

Potential energy (Gravity)  $U_g = \sum_{i=1}^N mgl_i(1 - \cos(\theta_i))$ 

Potential energy (Springs)  $U_s = \sum_{i=1}^{N-1} \frac{1}{2}$ 

$$=\sum_{i=1}^{N-1}\frac{1}{2}\frac{Fl^{2}}{a}(\theta_{i}-\theta_{i+1})^{2}$$

#### Using Principle of least action

$$\begin{split} L &= T - U_{g} - U_{s} \qquad \text{(Equivalent to the Force approach)} \\ \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\theta}_{i}} \right) - \frac{\partial L}{\partial \theta_{i}} = 0 \\ \ddot{\theta}_{i} &= \frac{Fl^{2}}{Ia} \left( \theta_{i-1} + \theta_{i+1} - 2\theta_{i} \right) - \frac{mgl_{t}}{I} \sin(\theta_{i}) \end{split}$$

18

**SLOVAKI** 

# Chain of pendula: Equation of motion For discrete system $\ddot{\theta}_{i} = \frac{Fl^{2}}{Ia} \left(\theta_{i-1} + \theta_{i+1} - 2\theta_{i}\right) - \frac{mgl_{t}}{I} \sin(\theta_{i})$ From Torque analysis or Using principle of least action

(Derivation in appendices)

#### Continuous approximation to 1st order:

Using Taylor expansion:

 $\omega_0^2 = \frac{mgl_t}{r}$ 

$$\left(\theta_{i+1} + \theta_{i-1} - 2\theta_i\right) \approx a^2 \frac{\partial^2 \theta}{\partial x^2}$$

 $c_0^2 = \frac{a}{I}$  Length between pendula Maximal possible information speed

Natural frequency of single pendulum

$$\frac{\partial^2 \theta}{\partial t^2} - c_0^2 \frac{\partial^2 \theta}{\partial x^2} + \omega_0^2 \sin \theta = 0$$

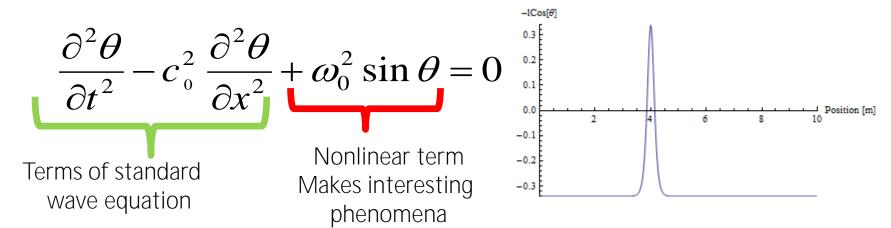
Sine-Gordon equation Known analytical solution



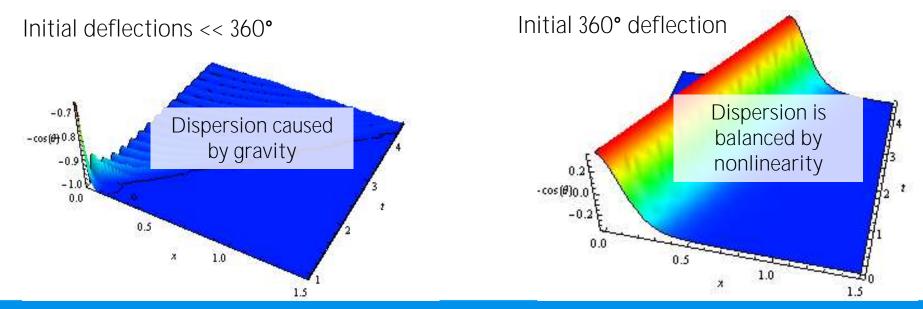
SLOVAKIA

# Analytic approach

Continuous system – Sine Gordon Equation

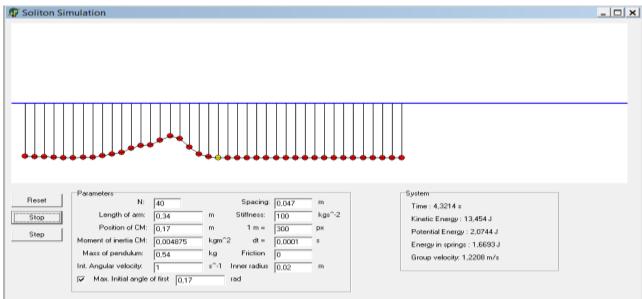


Predictions of continuous model (Sine-Gordon equation):



# Discrete model: Numerical approach

Using Runge-Kutta 4<sup>th</sup> Order method



SLOVAKIA

21

Without friction:

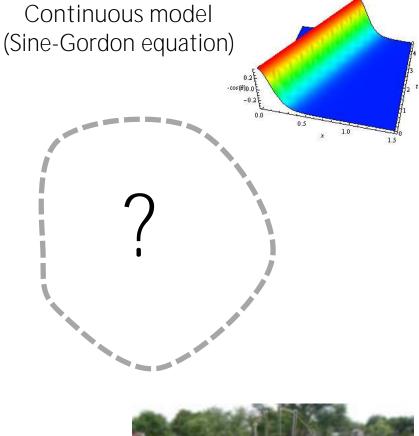
$$\ddot{\theta}_i = \frac{Fl^2}{Ia} \left( \theta_{i-1} + \theta_i - 2\theta_{i+1} \right) - \frac{mgl_t}{I} \sin(\theta_i)$$

With kinetic friction:

$$\ddot{\theta}_{i} = \frac{Fl^{2}}{Ia} \left(\theta_{i-1} + \theta_{i+1} - 2\theta_{i}\right) - \frac{mgl_{i}}{I} \sin(\theta_{i}) - \operatorname{sgn}(\dot{\theta}) \frac{r}{I} f\left(mg + \frac{Fl}{Ia} \left(\theta_{i-1} + \theta_{i+1} - 2\theta_{i}\right)\right)$$

### Relations

Discrete model (Numerical simulation)



Experiment





SLOVAKIA

# PROPAGATION OF DEFLECTION

Small deflections

(<<360°)

# Example of behaviour (<360°)



SLOVAKIA

# Dispersion result from analytical approach

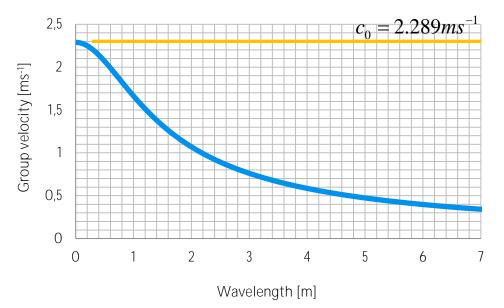
Property of a system – Group velocity is wavelength depended

Dispersion law for our system (Derivation in appendices)

$$v_{group}(\lambda) = \frac{2\pi c_0^2}{\sqrt{\lambda^2 \omega_0^2 + 4\pi^2 c_0^2}}$$

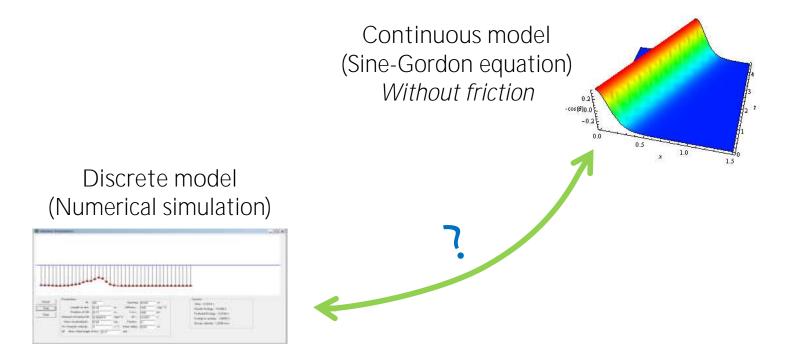
Theoretical prediction for our chain of pendula

From continuous model:



SLOVAKIA

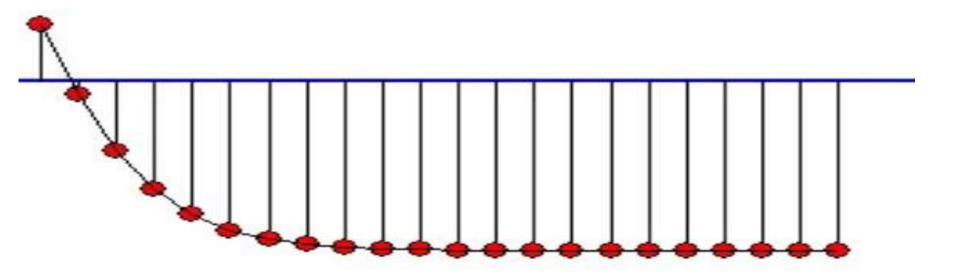
#### Relations



Experiment *Friction* 

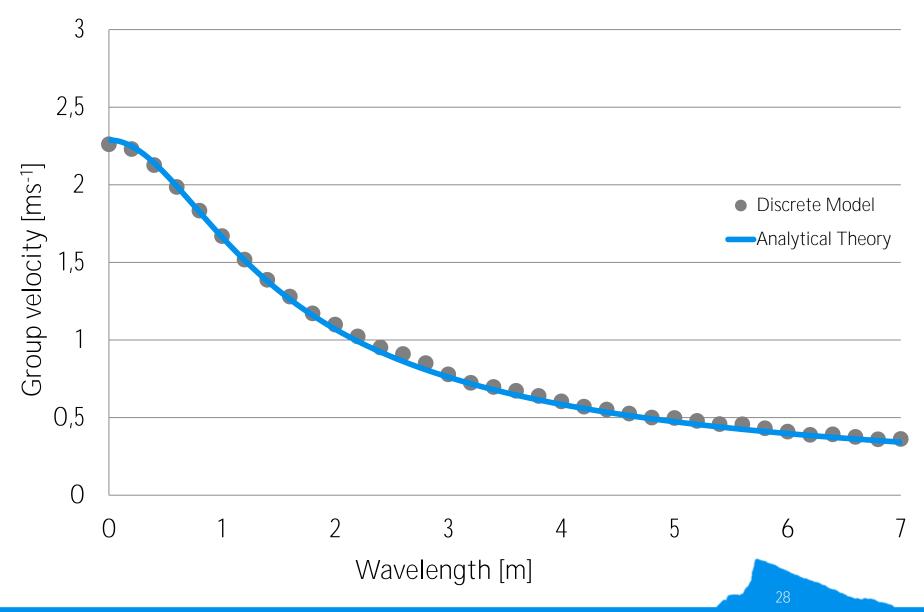


# Simulation of discrete system without friction



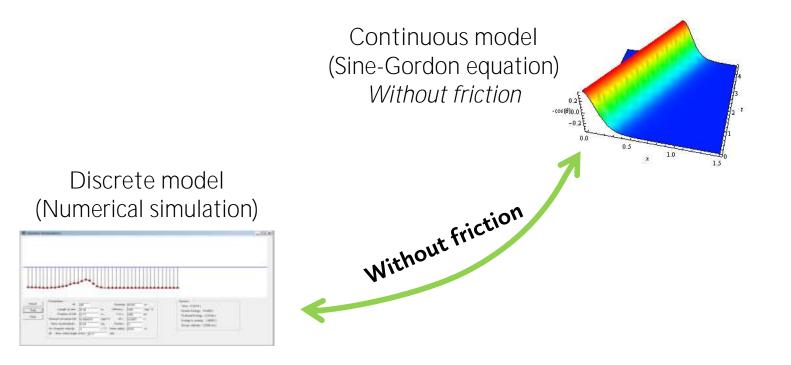
SLOVAKIA

### Analytical approach/Discrete model



SLOVAKIA

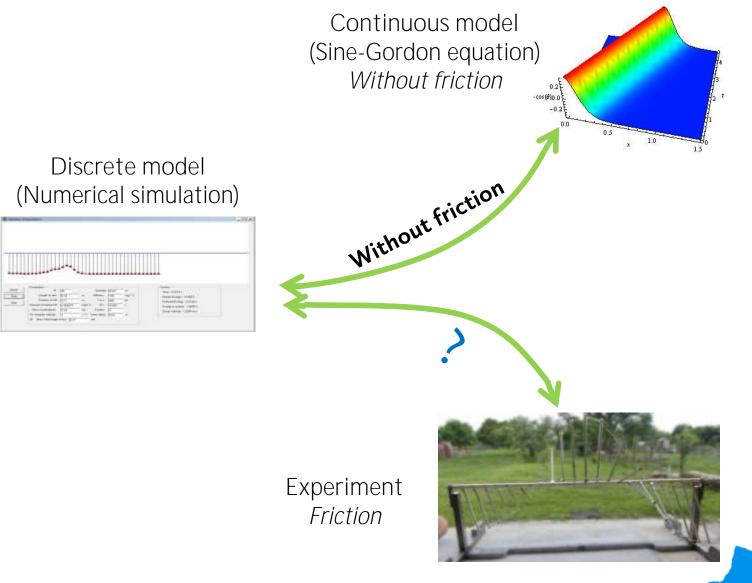
### Relations



#### Experiment *Friction*



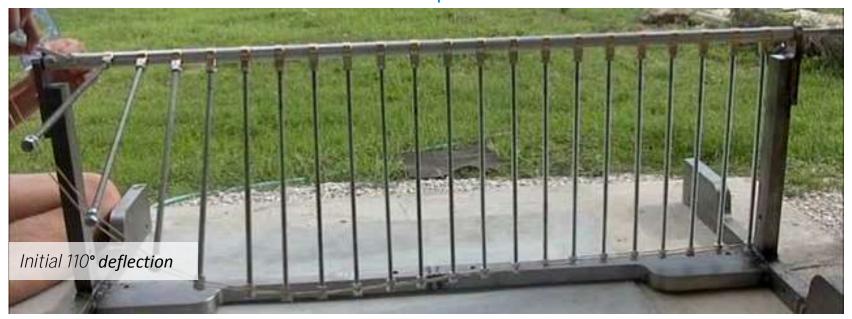
### Relations

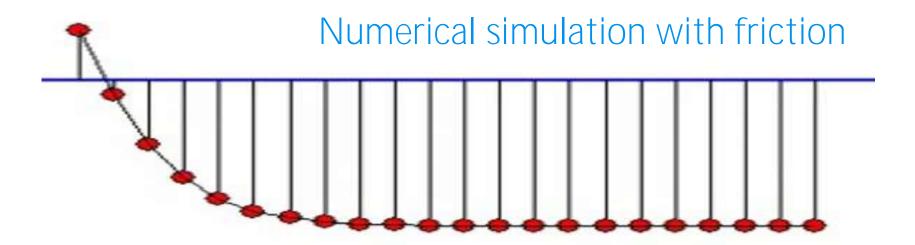


# Comparison

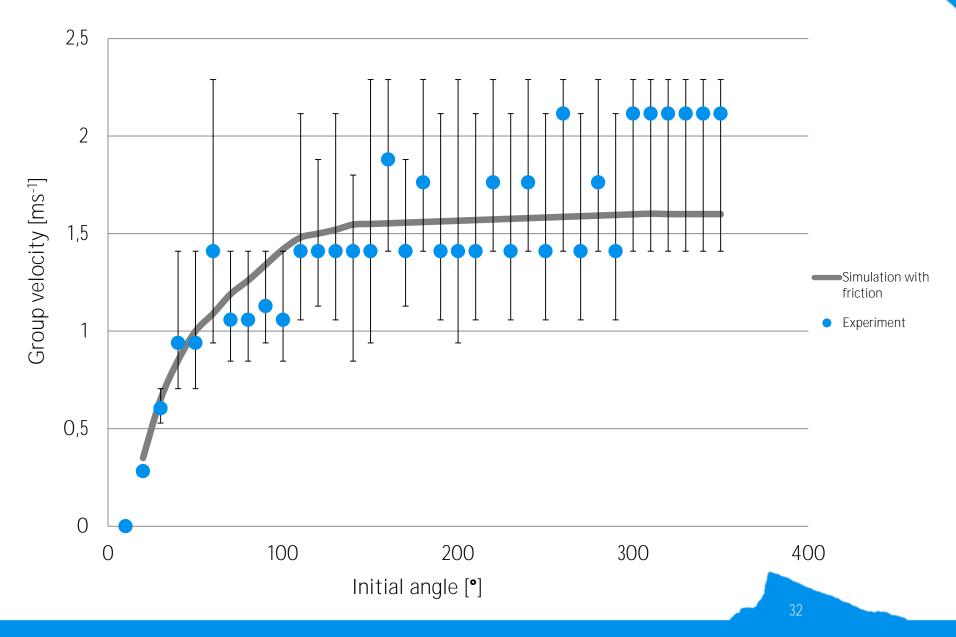
#### Experiment

SLOVAKIA IYPT '13



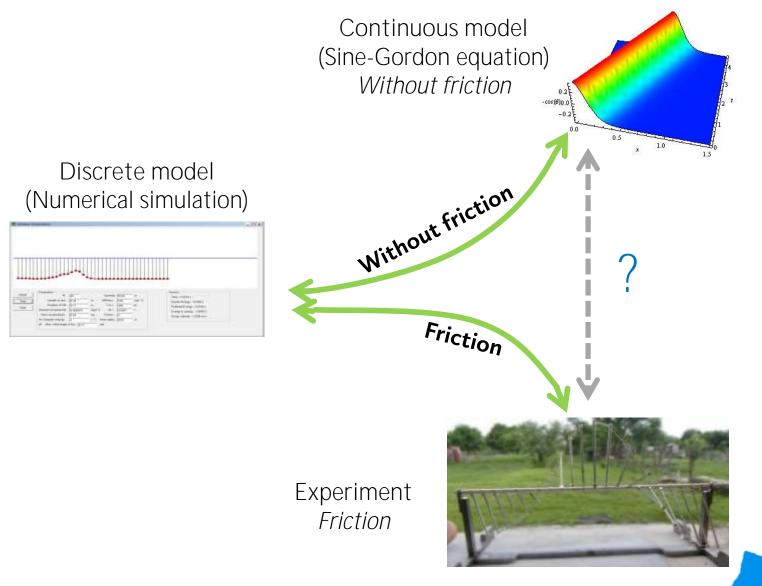


#### Group velocity / Initial angle of 1st pendulum

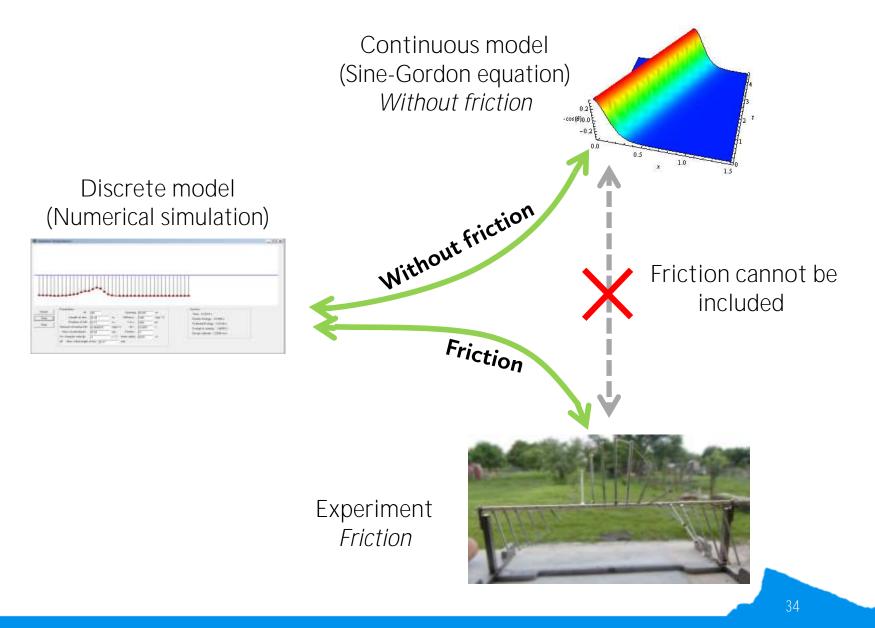


SLOVAKIA IYPT '13

### Relations



### Relations





# SOLITON

Entire 360° revolution Propagation of deflection Group velocity

y[m]

# What does Sine-Gordon eq. say?

Continuous model:

$$\frac{\partial^2 \theta}{\partial t^2} - c_0^2 \frac{\partial^2 \theta}{\partial x^2} + \omega_0^2 \sin \theta = 0$$

Soluti

#### Still one unknown variable $\nu$ - Group velocity !

Related to initial angular velocity at maximum (Derivation in appendices)

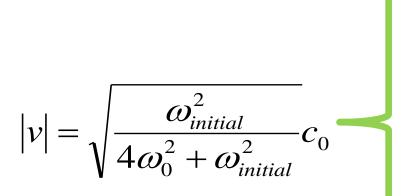
$$|v| = \sqrt{\frac{\omega_{initial}^2}{4\omega_0^2 + \omega_{initial}^2}} c_0$$

[1] Physics of solitons. M. Peyrard, T. Dauxios, *Cambridge University Press (2010)* 

$$|v| = \sqrt{\frac{\omega_{initial}}{4\omega_0^2 + \omega_{initial}}} C_0$$

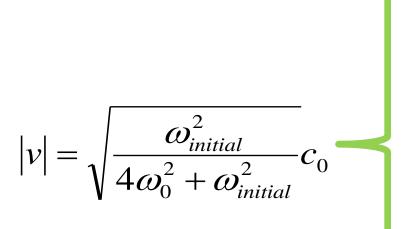
37

SLOVAKIA IYPT '13



38

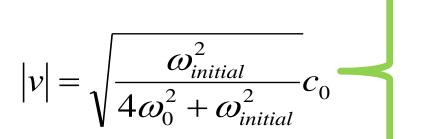
SLOVAKIA



Small initial angular velocities  $\omega_0 >> \omega_{initial} \quad v \approx \frac{\omega_{initial}}{2\omega_0} c_0$  v $\omega_{initial}$ 

Group velocity rises linearly

SLOVAKIA

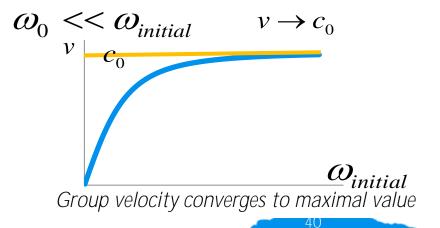


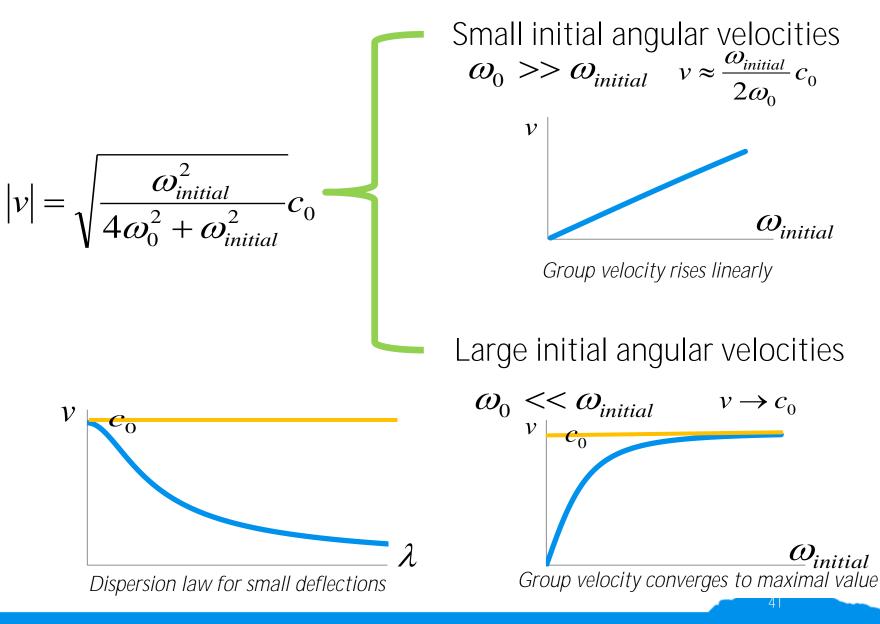
Small initial angular velocities  $\omega_0 >> \omega_{initial}$   $v \approx \frac{\omega_{initial}}{2\omega_0} c_0$  v $\omega_{initial}$ 

SLOVAKIA

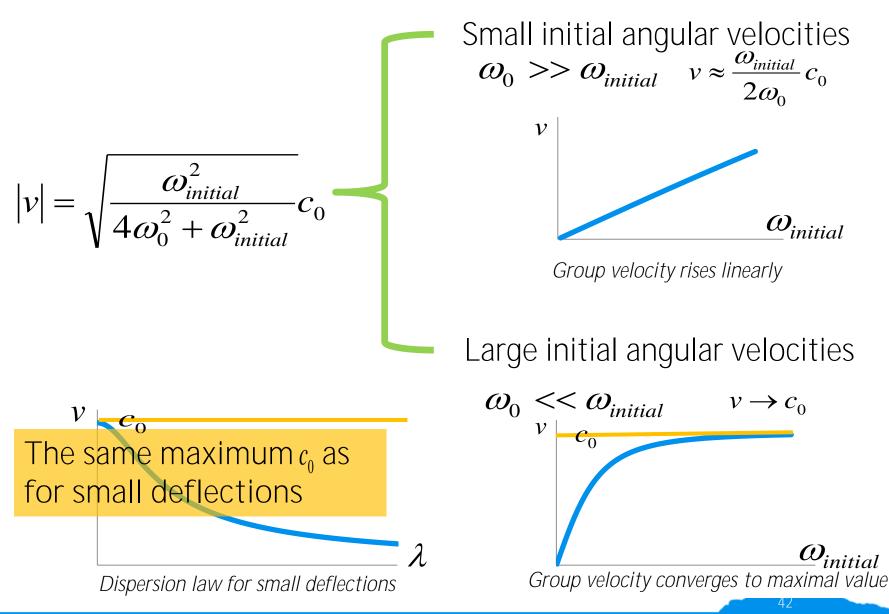
Group velocity rises linearly

Large initial angular velocities

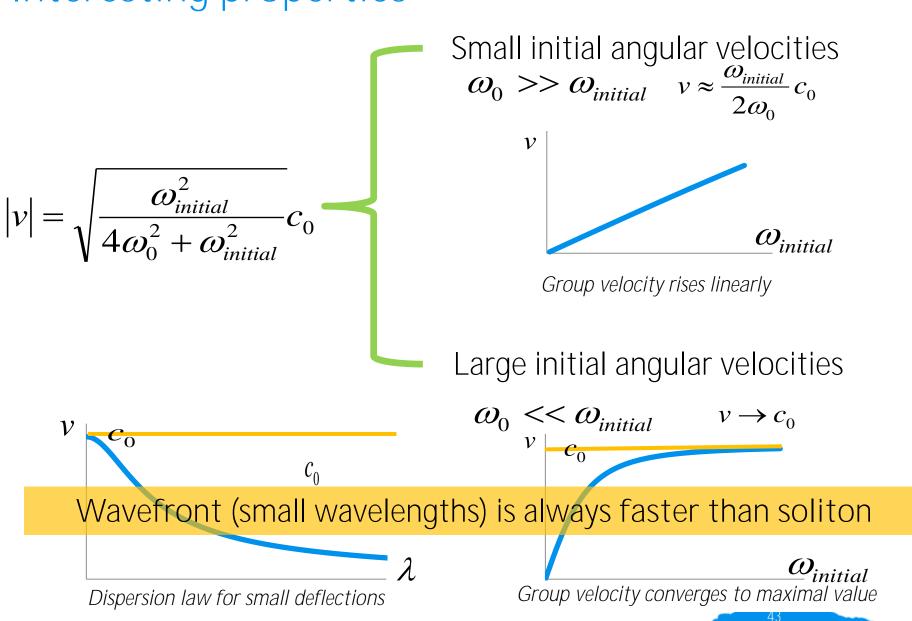




**SLOVAKI** 

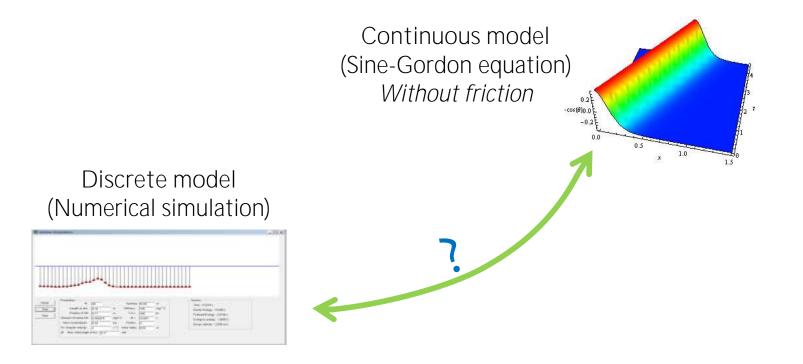


SLOVAKI



SLOVAKI/

#### Relations



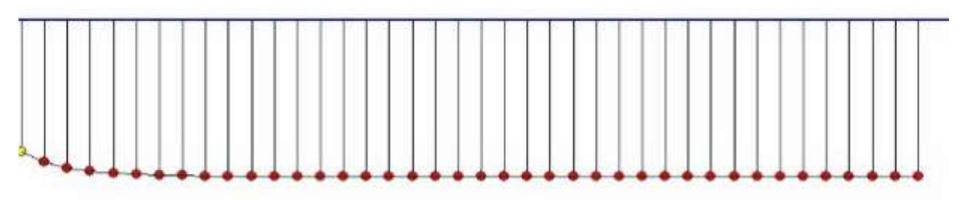
Experiment *Friction* 

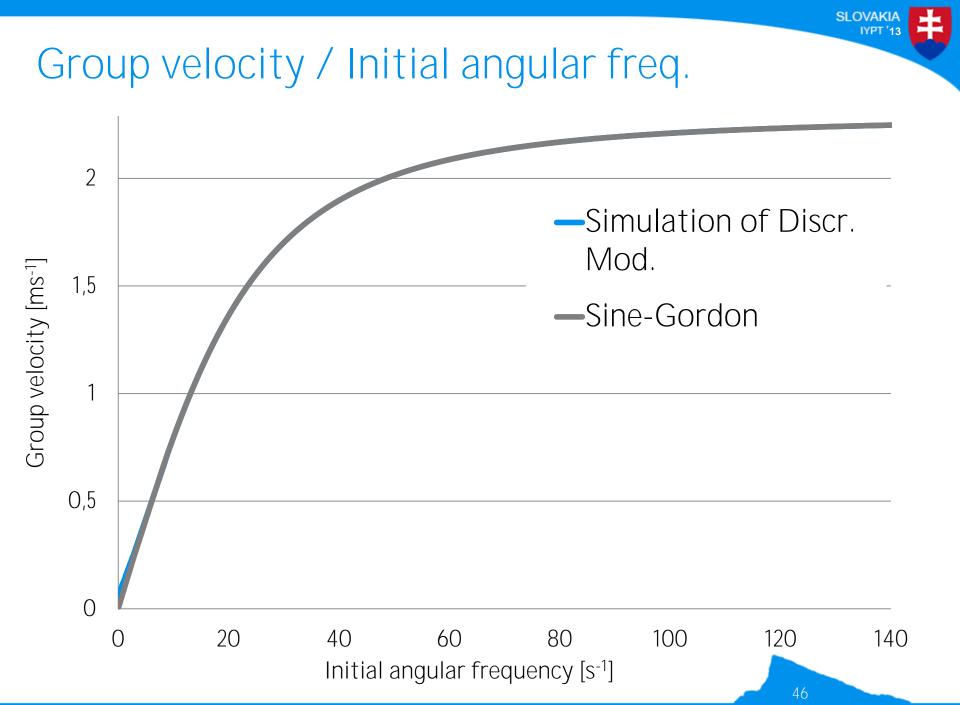


Soliton

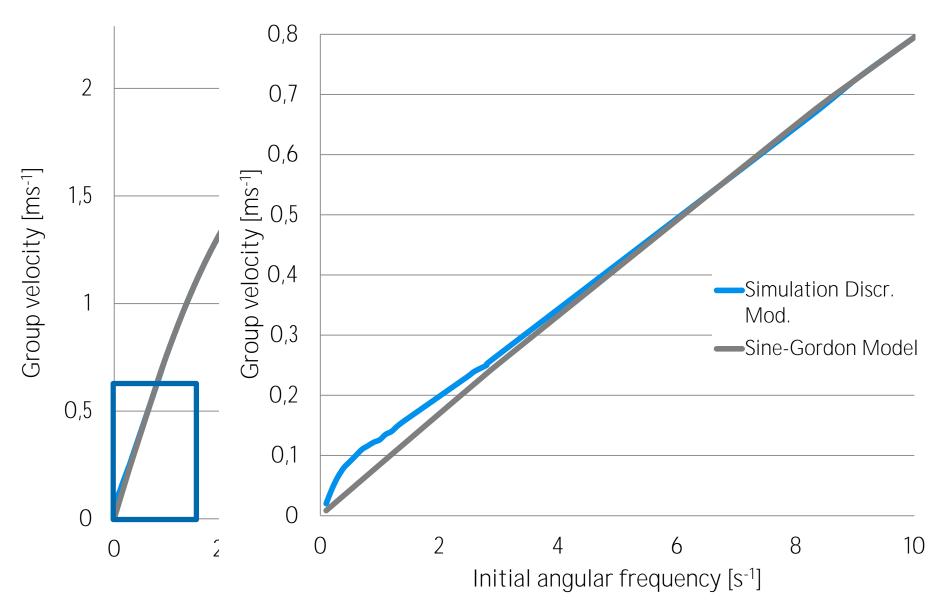
#### Simulation of discrete system without friction

Maintains its shape and moves at constant speed



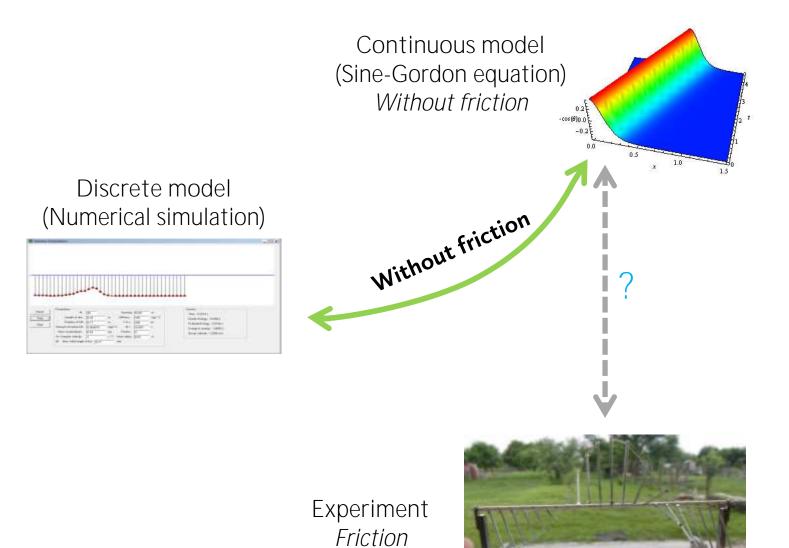


#### Group velocity / Initial angular freq.

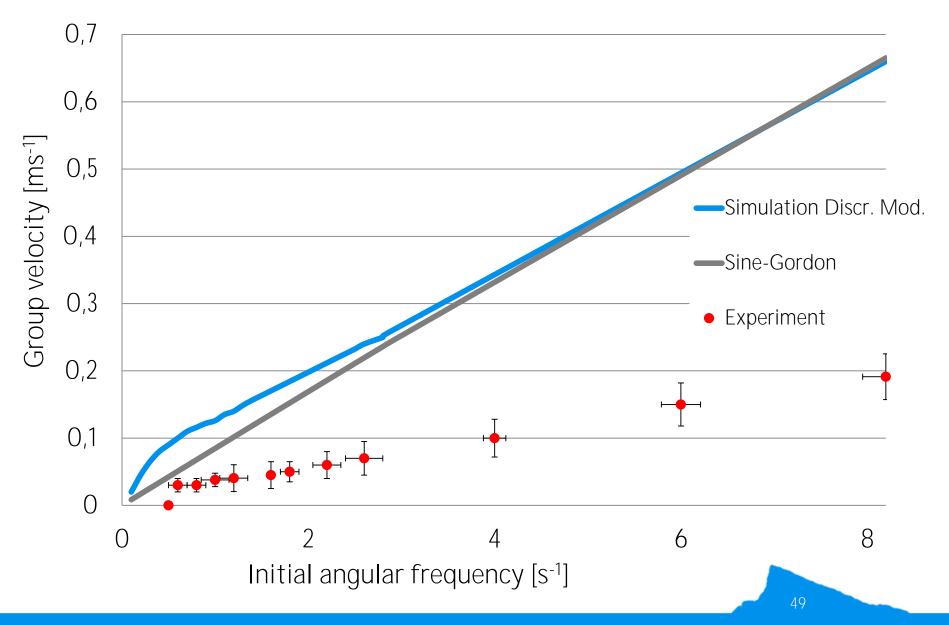


SLOVAKIA IYPT '13

#### Relations

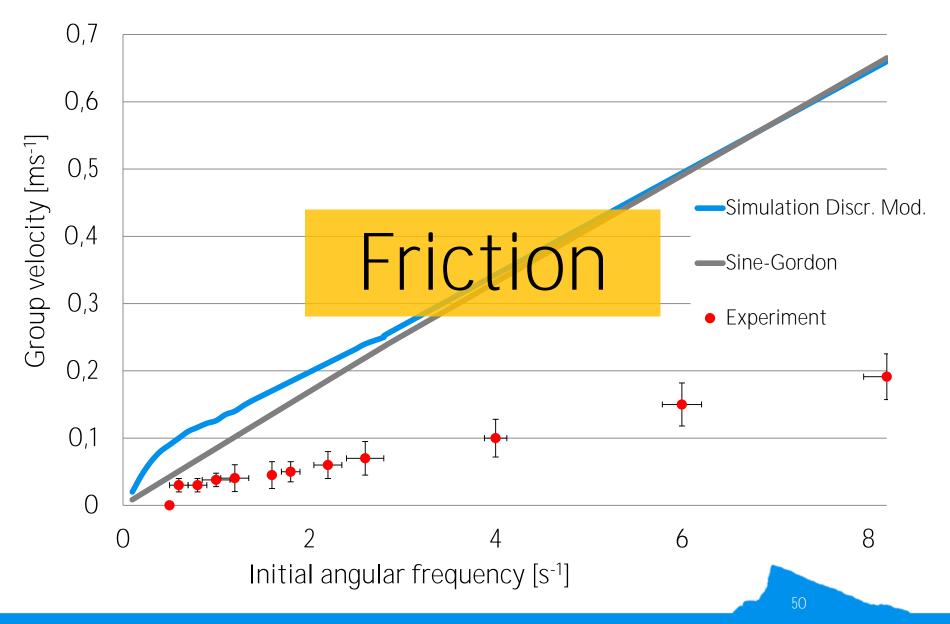


#### Group velocity / Initial angular freq.



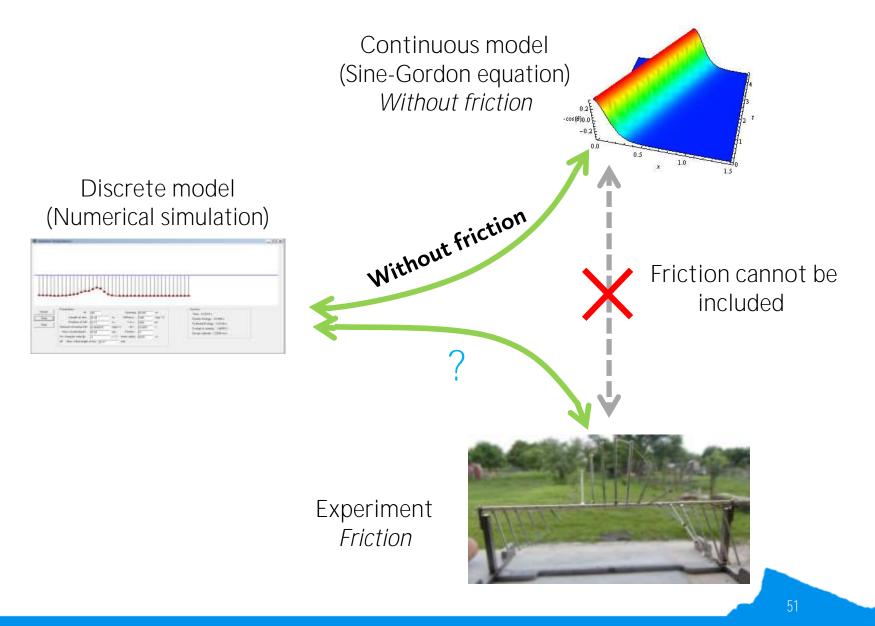
SLOVAKIA

#### Group velocity / Initial angular freq.



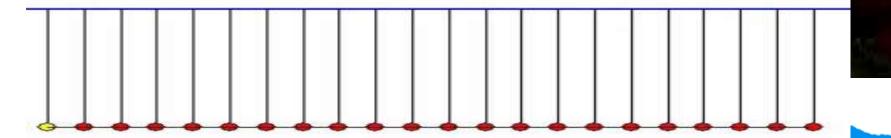
SLOVAKIA

#### Relations





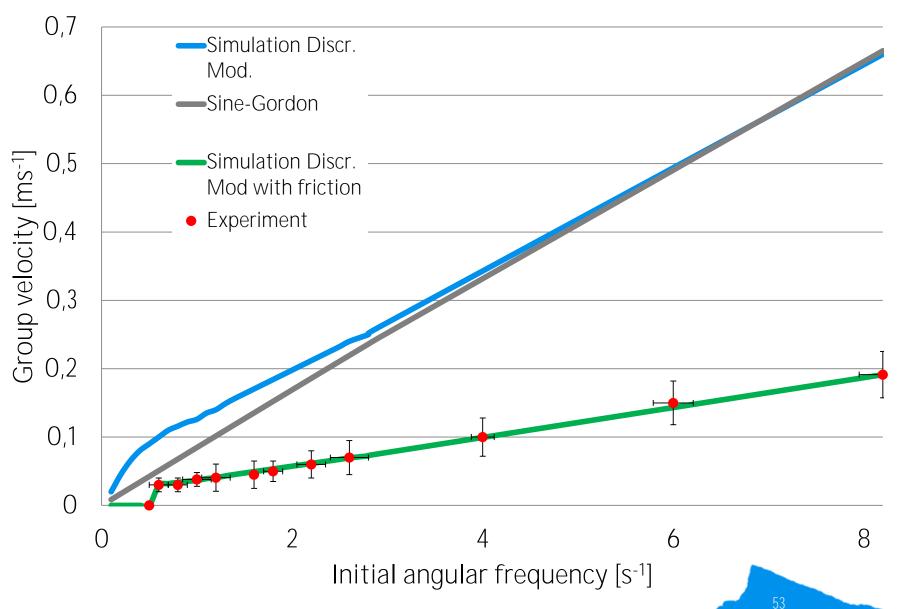




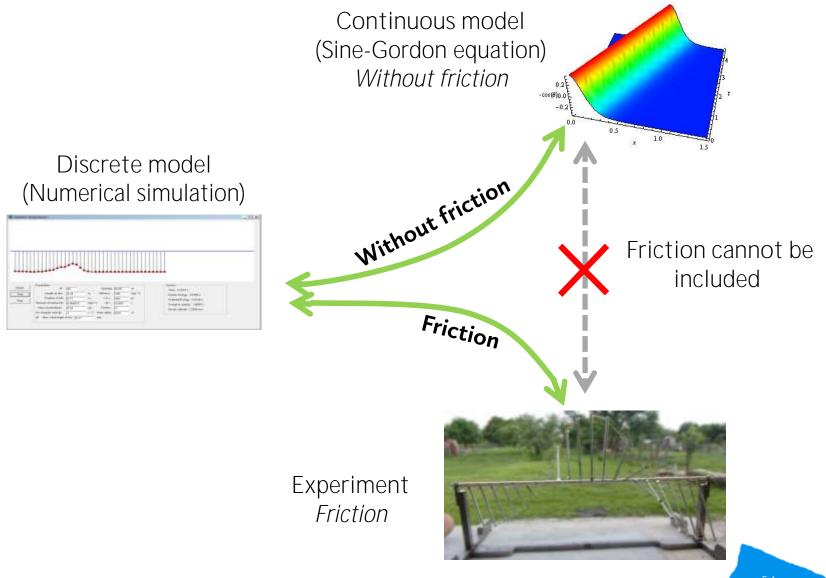
SLOVAKIA IYPT '13

### Group velocity / Initial angular frequency

SLOVAKIA



#### Relations





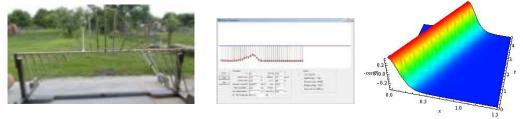
SLOVAKIA IYPT '13

# SUMMARY

### Conclusion

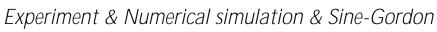
Analysis of the system & Equation of motion

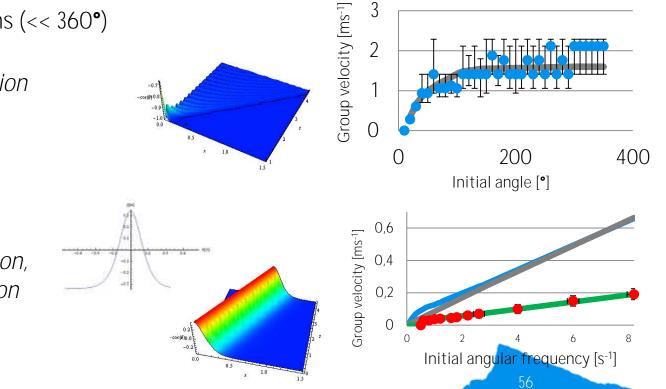
$$\ddot{\theta}_{i} = \frac{Fl^{2}}{Ia} \left( \theta_{i-1} + \theta_{i+1} - 2\theta_{i} \right) - \frac{mgl_{t}}{I} \sin(\theta_{i})$$



- Propagation of deflection
  - Small deflections (<< 360°)</li>

Dispersion & Dissipation of profile





Soliton

*Stable against dispersion, but not against friction* 

### Conclusion

- Small deflections (<< 360°)
- Soliton

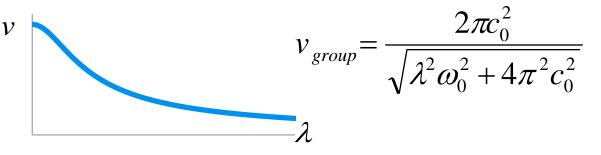
(Sine-Gordon equation) Without friction -cos(Ø)0.0 -0.2 1.0 x 1.5 Discrete model (Numerical simulation) Without friction Friction cannot be included Friction

Continuous model

**SLOVAKI** IYP1

## Thranklysion for your attention!

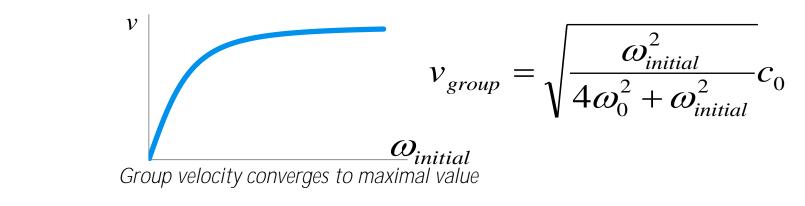
Small deflections (<< 360°)</li>



Dispersion law for small deflections

Wavefront (small wavelengths) is always faster than soliton







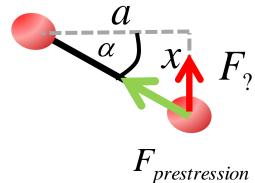
SLOVAKIA IYPT '13

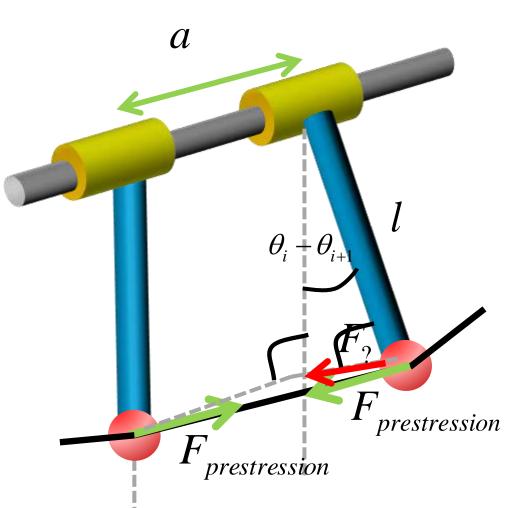
# APPENDICES

# Energy in springs

Looking from reference frame connected with previous pendulum

View from above:



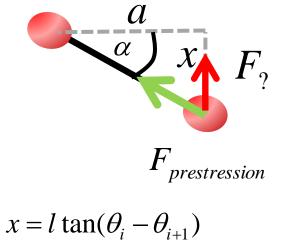


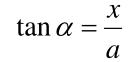
SLOVAKIA IYPT '13

# Energy in springs

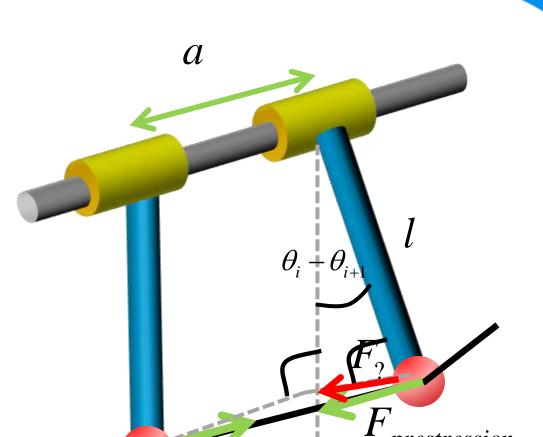
Looking from reference frame connected with previous pendulum







$$F_{?} = F_{prestression} \sin\left(\arctan\left(\frac{l}{a}\tan\left(\theta_{i} - \theta_{i+1}\right)\right)\right)$$



prestression

F

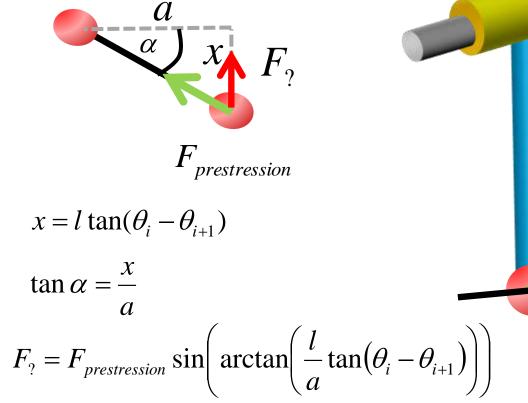
prestression

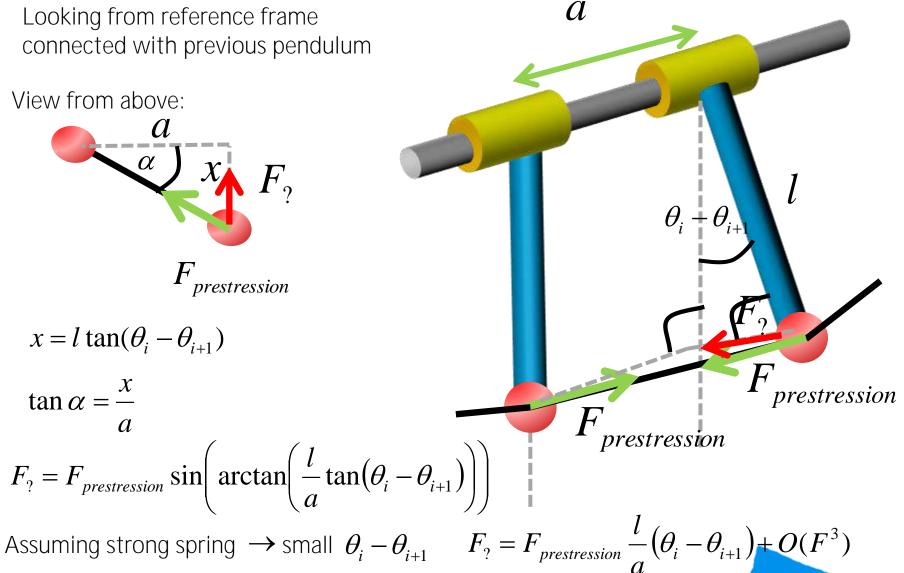
**SLOVAKI** 

# Energy in springs

Looking from reference frame connected with previous pendulum





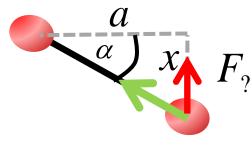


SLOVAKIA IYPT '13

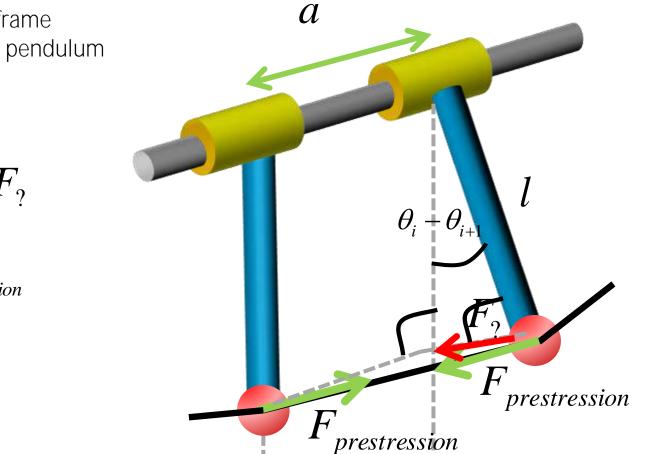
# Energy in springs

Looking from reference frame connected with previous pendulum

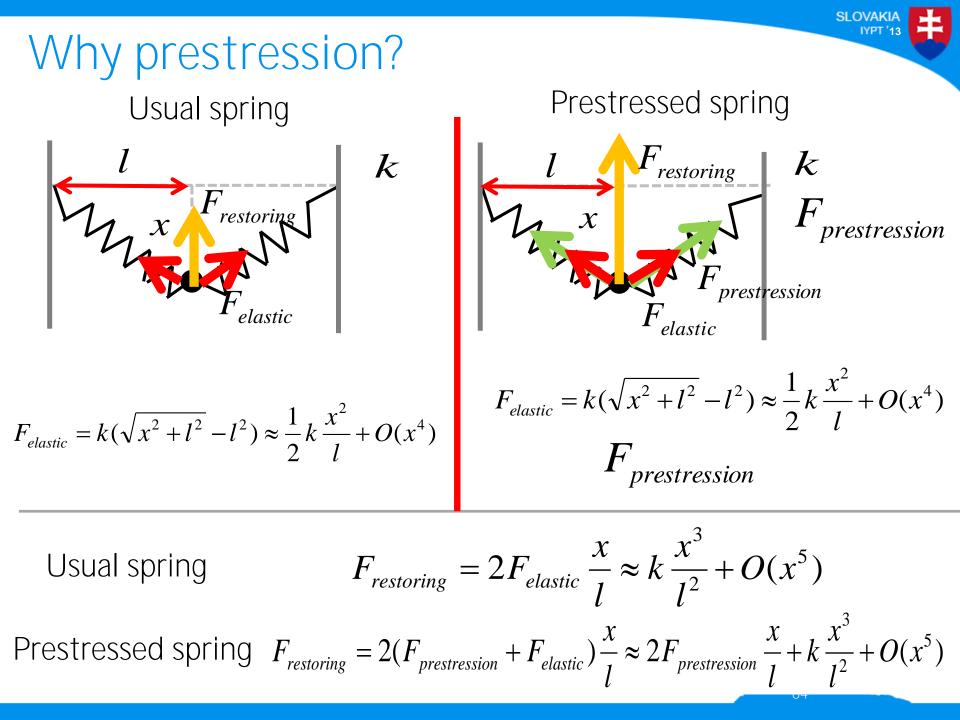
View from above:



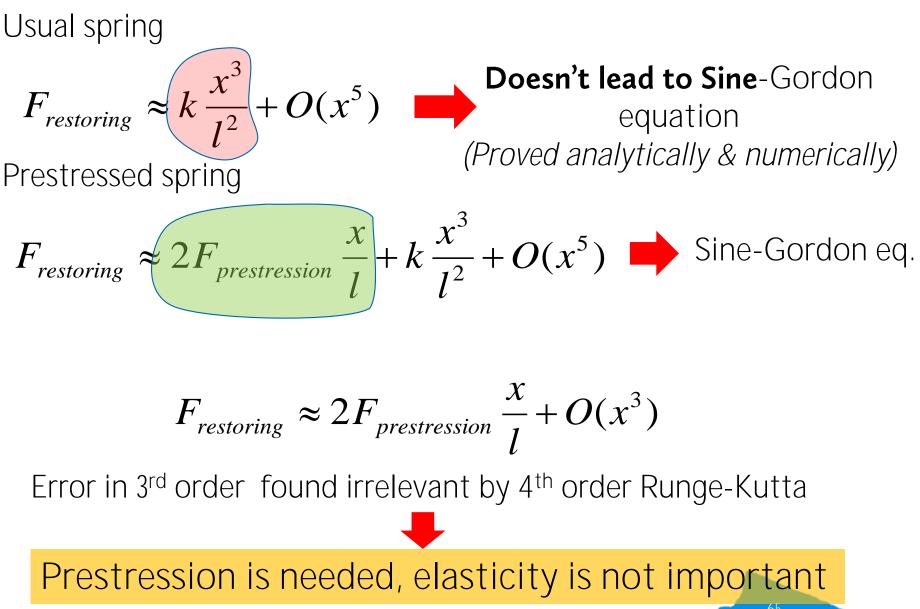
F<sub>prestression</sub>



$$E = \int F_{2} dx = \int F_{2} l d(\Delta \theta) = \frac{1}{2} \frac{F l^{2}}{a} \left(\theta_{i} - \theta_{i+1}\right)^{2} + O\left(\left(\theta_{i} - \theta_{i+1}\right)^{4}\right)$$



# Why prestression?



### Derivation of equation of motion

Using Principle of least action (Euler-Lagrange equation)

$$L = T - U_g - U_s \qquad \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\theta}_i} \right) - \frac{\partial L}{\partial \dot{\theta}_i}$$

Term from Kinetic energy:

$$\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\theta}_i} \right) = I \ddot{\theta}_i$$

$$\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\theta}_i} \right) - \frac{\partial L}{\partial \theta_i} = 0$$

Terms from Potential energy:

$$\frac{\partial L}{\partial \theta_i} = \frac{\partial}{\partial \theta_i} (-U_g) + \frac{\partial}{\partial \theta_i} (-U_s)$$

$$\frac{\partial}{\partial \theta_i} \left( -U_g \right) = -mgl_t \sin(\theta_i)$$

$$\frac{\partial}{\partial \theta_i} \left( -U_s \right) = \frac{Fl^2}{a} \left( \theta_{i-1} + \theta_{i+1} - 2\theta_i \right)$$

$$\ddot{\theta}_{i} = \frac{Fl^{2}}{Ia} \left(\theta_{i-1} + \theta_{i+1} - 2\theta_{i}\right) - \frac{mgl_{t}}{I} \sin(\theta_{i})$$

**SLOVAKIA** IYPT

### Continuous limit: Derivation

Using Equation of motion

$$\ddot{\theta}_{i} = \frac{Fl^{2}}{Ia} (\theta_{i-1} + \theta_{i+1} - 2\theta_{i}) - \frac{mgl_{t}}{I} \sin(\theta_{i})$$
Small difference in angle of adjacent pendula  
 $\sin(x) \approx x$ 

$$\frac{\partial^{2}\theta}{\partial t^{2}} - c_{0}^{2} \frac{\partial^{2}\theta}{\partial x^{2}} + \omega_{0}^{2} \sin \theta = 0$$

$$(\theta_{n+1} + \theta_{n-1} - 2\theta_{i}) \approx a^{2} \frac{\partial^{2}\theta}{\partial x^{2}} + O\left(a^{4} \frac{\partial^{4}\theta}{\partial x^{4}}\right)$$
Sine-Gordon equation  
known analytical solution [1]
$$c_{0}^{2} = \frac{Fl^{2}a}{I}$$

$$\omega_{0}^{2} = \frac{mgl_{t}}{I}$$

[1] Physics of solitons. M. Peyrard, T. Dauxios, *Cambridge University Press (2010)* 

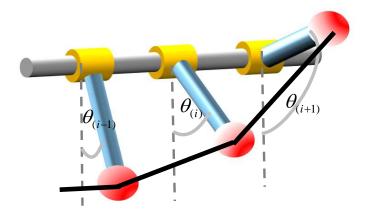
SLOVAKIA

#### Chain of pendula: Equation of motion

Discrete system

$$\ddot{\theta}_{i} = \frac{Fl^{2}}{Ia} \left(\theta_{i-1} + \theta_{i+1} - 2\theta_{i}\right) - \frac{mgl_{t}}{I} \sin(\theta_{i})$$
$$\ddot{\theta}_{1} = -\frac{Fl^{2}}{Ia} \left(\theta_{1} - \theta_{2}\right) - \frac{mgl_{t}}{I} \sin(\theta_{1})$$

$$\ddot{\theta}_{N} = \frac{Fl^{2}}{Ia} \left( \theta_{N-1} - \theta_{N} \right) - \frac{mgl_{t}}{I} \sin(\theta_{N})$$



SLOVAKIA IYPT '13

#### Friction

Pendulum cannot move just rotate

$$\sum \vec{F} = 0 = \vec{F}_n + \vec{F}_g + \vec{F}_{spring}$$

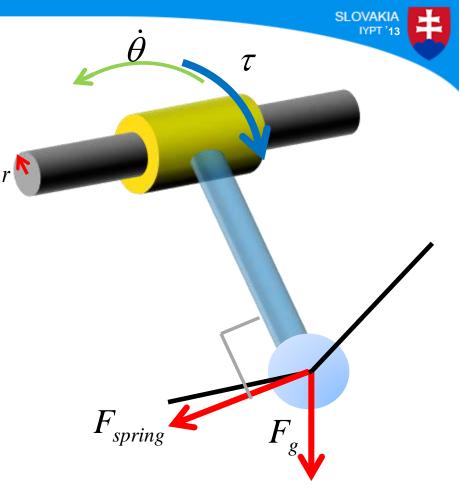
Normal force acting on the axis

$$\left|\vec{F}_{N}\right| = mg + \frac{Fl}{a}(\theta_{i+1} + \theta_{i-1} - 2\theta_{i})$$

Causes torque of friction forces

$$F_f \leq fF_N$$

$$\tau_f = rF_f$$



$$\ddot{\theta}_{i} = \frac{Fl^{2}}{Ia} \left(\theta_{i+1} + \theta_{i-1} - 2\theta_{i}\right) - \frac{mgl_{t}}{I} \sin(\theta_{i}) - \operatorname{sgn}(\dot{\theta}) \frac{r}{I} f\left(mg + \frac{Fl}{Ia} \left(\theta_{i+1} + \theta_{i-1} - 2\theta_{i}\right)\right)$$

### Simulation (4<sup>th</sup> Order Runge-Kutta)

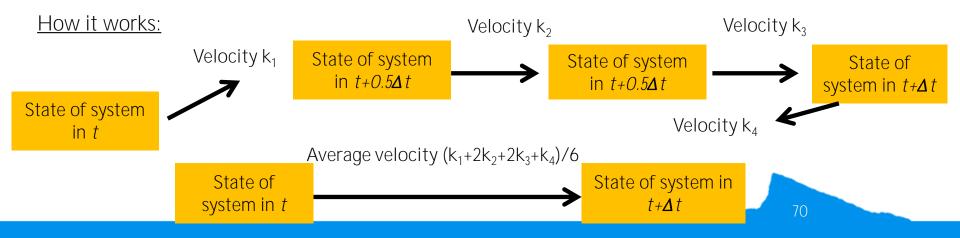
Using 4<sup>th</sup> order Runge-Kutta method:

- More precise (With comparison to Euler method)
- Faster (Higher time step is sufficient to achieve the same accurancy)
- Problem is about nonlinearity 1<sup>st</sup> order method was unstable

| 🕼 Soliton Simulation                                                                                                                                                                                                                                                     | <u>-     ×  </u> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                                                                                                                                                                                                                                                                          |                  |
|                                                                                                                                                                                                                                                                          |                  |
|                                                                                                                                                                                                                                                                          |                  |
|                                                                                                                                                                                                                                                                          |                  |
|                                                                                                                                                                                                                                                                          | _                |
|                                                                                                                                                                                                                                                                          |                  |
|                                                                                                                                                                                                                                                                          |                  |
| *****************************                                                                                                                                                                                                                                            |                  |
| Parameters                                                                                                                                                                                                                                                               |                  |
| Reset N: 40 Spacing: 0.047 m Time : 4,3214 z                                                                                                                                                                                                                             |                  |
| Stop         Length of arm         0.34         m         Stiffness:         100         kgs*^2         Kinetic Energy:         13,454 J           Position of CM:         0,17         m         1 m =         300         PK         Potential Energy:         20244 J |                  |
| Step         Moment of inertia CM:         0.004875         kgm^2         dt =         0.0001         *         Energy in springs : 1.6693 J                                                                                                                             |                  |
| Mazz of pendulum: 0,54 kg Friction 0 Group velocity: 1.2208 m/s                                                                                                                                                                                                          |                  |
| Int. Angular velocity: 1 s^1 Inner radius 0.02 m                                                                                                                                                                                                                         |                  |
| here,                                                                                                                                                                                                                                                                    |                  |

Simulating equation of motion for every pendulum

$$\ddot{\theta}_{i} = \frac{kl^{2}}{I} \left( \sin(\theta_{i-1} - \theta_{i}) - \sin(\theta_{i} - \theta_{i+1}) \right) - \frac{mgl_{i}}{I} \sin(\theta_{i}) - \operatorname{sgn}(\dot{\theta}) \frac{r}{I} f(mg + \frac{kl}{I} \left( \sin(\theta_{i-1} - \theta_{i}) - \sin(\theta_{i} - \theta_{i+1}) \right) \right)$$



### **Dispersion:** Derivation

Assuming wave in form:  $\theta_{(x,t)} = Ae^{i(\omega t + kx)}$ 

Taking into the limit of Sine-Gordon equation:

 $-\omega^2 A e^{i(\omega t + kx)} + c_0^2 k^2 A e^{i(\omega t + kx)} + \omega_0^2 A e^{i(\omega t + kx)} = 0$  $\omega = \pm \sqrt{\omega_0^2 + c_0^2 k^2}$ 

$$v_{group} \equiv \frac{\partial \omega}{\partial k} = \frac{c_0^2 k}{\sqrt{\omega_0^2 + c_0^2 k^2}} = \frac{2\pi c_0^2}{\sqrt{\lambda^2 \omega_0^2 + 4\pi^2 c_0^2}} = \frac{2\pi F l^2 a}{\sqrt{\lambda^2 mg l_t I + IF l^2 a}}$$



### Derivation: Group velocity of Soliton

• Angular velocity at maximum point

$$\omega_{initial} = \frac{\partial \theta_{(x,t)}}{\partial t}\Big|_{x=0,t=0}$$

$$\omega_{initial}^{2} = \left(\frac{\partial \theta_{(x,t)}}{\partial t}\right)^{2} = v^{2} \left(\frac{\partial \theta_{(x,t)}}{\partial z}\right)^{2} \qquad z = x - vt \quad \theta_{(x,t)} = 4ArcTan \left(Exp\left(\frac{\omega_{0}(x - vt)}{c_{0}\sqrt{1 - \frac{v^{2}}{c_{0}^{2}}}}\right)\right)$$

$$\left(\frac{\partial \theta_{(x,t)}}{\partial z}\right)^2 = 4 \frac{\omega_0^2}{c_0^2 \left(1 - \frac{v^2}{c_0^2}\right)} \operatorname{Sech}^2 \left(\frac{\omega_0(x - vt)}{c_0 \sqrt{1 - \frac{v^2}{c_0^2}}}\right) \qquad \operatorname{Sech}(0) = 1$$

$$\left|\nu\right| = \sqrt{\frac{\omega_{initial}^{2}}{4\omega_{0}^{2} + \omega_{initial}^{2}}} c_{0}$$

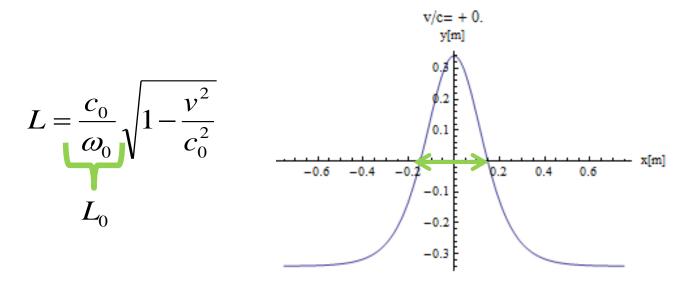
SLOVAKIA IYPT'13

### Analogy

Typical length of soliton decreases with increasing group velocity

$$\theta_{(x,t)} = 4ArcTan \left[ Exp \left( \frac{\omega_0 (x - vt)}{c_0 \sqrt{1 - \frac{v^2}{c_0^2}}} \right) - \frac{1}{L} \right]$$

Analogy to Special Theory of Relativity – Contraction of length



SLOVAKIA

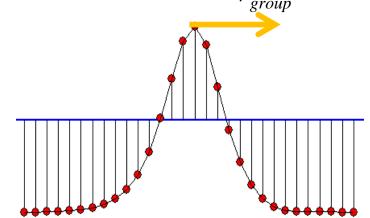
### Two theoretical limits

1

• Limit of maximal group velocity - maximal information speed  $v_{group}$ 

$$\mathcal{D}_{initial} \rightarrow \infty \qquad \mathcal{V}_{group} = c_0$$

Actually never in our world (Speed of light)



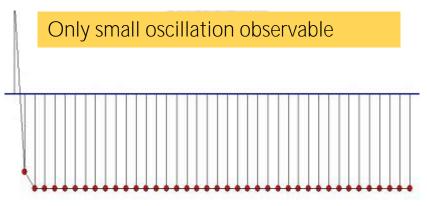
SLOVAKI

"Invisibility" – Consequence of contraction in discrete system

If the "length of soliton" is much smaller than a

$$\omega_{initial} \gg \sqrt{\frac{\frac{Fl^{2}}{a} - mgl_{t}}{I}}$$
(Derivation in appendices)  

$$\omega_{initial} \approx 100 \ rads^{-1}$$



### Two theoretical limits

• Limit of maximal group velocity - maximal information speed  $v_{group}$ 

$$\omega_{initial} \rightarrow \infty$$
  $v_{group} = c_0$ 

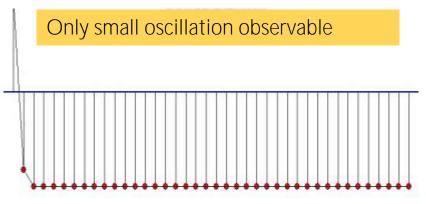
Actually never in our world (Speed of light)

- Experimental limit Disruption of spring
- "Invisibility" Consequence of contraction in discrete system

If the "length of soliton" is much smaller than a

$$\omega_{initial} \gg \sqrt{\frac{\frac{Fl^{2}}{a} - mgl_{t}}{I}}$$
(Derivation in appendices)  

$$\omega_{initial} \approx 100 \ rads^{-1}$$



SLOVAKI

"Invisibility"

If the "length of soliton" is much smaller than a  $\omega_{initial} >> \sqrt{\frac{\frac{F}{a}l^2 - mgl_t}{r}}$ What if  $\frac{Fl^2}{mgl_t} < mgl_t$ Then Continuous approach cannot be used • It requires  $L_0 = \frac{c_0}{\omega_0} >> dhat means \qquad \frac{Fl^2}{a} >> mgl_t$ Energy in springs >> Gravitational energy

SLOVAKI

#### **SLOVAKI** Ultimate answer to all: "What if?" Small deflection 360° deflection Without friction Without gravity Stable profile Large wave moving along chain Dissipation of Friction Dissipation of Stable profile Large wave moving along chain Without friction Dispersion of initial profile With gravity Soliton **Dispersion & Dissipation Friction** Dissipation of Soliton of initial profile 77