

16. MAGNETIC BRAKES

"When a strong magnet falls down a non ferromagnetic metal tube, it will experience a *retarding force*.

Investigate the phenomenon."

Outline

Qualitative explanation

Quantitaive explanation

- Force modeling
- Dipole case
- Equation of motion

Apparatus and experimental methods

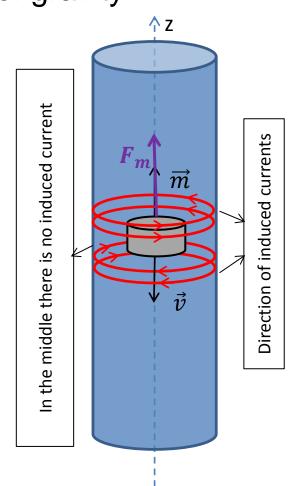
- Measurement of magnetic flux change
- Measurement of magnet velocity

Comparison of experimental data and theory

- Dependence of terminal velocity on magnet size
- Terminal velocity for dipole
- Dependence of terminal velocity on material conductivity
- Equation of motion

What causes the force?

- Magnet falls down under the influence of gravity
- Magnetic flux is changing in space
- Current is induced in the tube
- Currents act on magnet by force that reduces the speed of magnetic flux change (reducing the magnet speed)



 \vec{m} – magnetic moment \vec{v} –velocity of a magnet

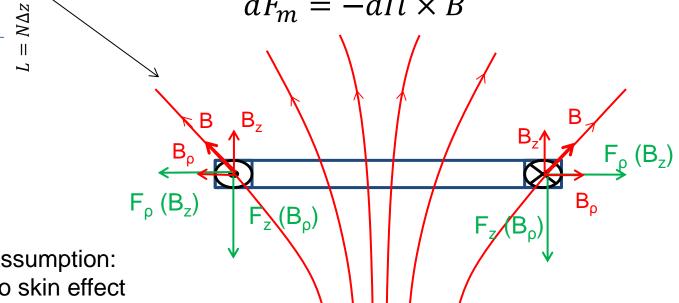
Force

 $\mathrm{d}z$

Δρ

 Because we know what is the force on a current loop we can write

 $d\vec{F}_m = -dI\vec{l} \times \vec{B}$



 F_m – force on magnetAssumption:

 $\rho_{\rm m}$

 F_c —force on current no skin effect

 $\Delta \rho$ -tickness of the type $_{8.3~mm} > 5.5~mm$

dz – lenght of a $|\omega pv = 0.1ms^{-1}; \Delta \rho = 1 \text{ mm}$

 ρ_m -mean radius of the pipe

√G

Force

• Magnetic field component B_{ρ} is causing the force in z direction so the force can be written as

$$dF_{m} = -dI \cdot 2\pi \rho_{m} \cdot B_{\rho}$$

$$dI = \frac{\sigma \Delta \rho \varepsilon}{2\pi \rho_{m}} dz$$

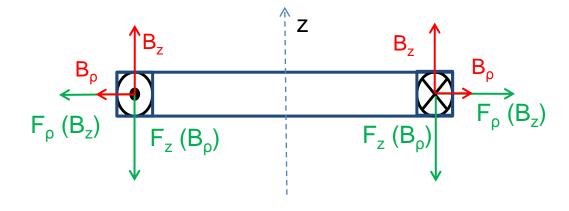
$$\varepsilon = \frac{d\phi}{dz} v$$

$$dI = \frac{\Delta \rho \sigma v}{2\pi \rho_{m}} \frac{d\phi}{dz} dz$$

Using Maxwell equation $\vec{\nabla}\vec{B}=0$ we derive expresion for B_{ρ}

$$B_{\rho} = -\frac{1}{2\pi\rho_m} \frac{d\phi}{dz}$$

 $\frac{d\phi}{dz}$ – change of magnetic flux in z direction ε – induced voltage σ – material conductivity R – restistance of the ring



Force

 After rearranging the term we obtain total force on a magnet caused by induced current

$$F_{m} = \frac{\sigma \Delta \rho v}{2\pi \rho_{m}} \int_{z_{1}}^{z_{2}} \left(\frac{d\phi}{dz}\right)^{2} dz$$

Equation of motion

II. Newton law for magnet states

$$m\frac{dv}{dt} = mg - F_m$$

• After solving for v we obtain (v(0) = 0)

$$v(t) = \tau g \left(1 - e^{-\frac{t}{\tau}}\right)$$

- Function is in form of exponential decay
- Terminal velocity can be expressed as

$$v = \tau g$$

Substitution:

$$\tau = \frac{2\pi\rho_m m_{mag}}{\sigma\Delta\rho} \frac{1}{\int_{\mathbf{z}_1}^{\mathbf{z}_2} \left(\frac{d\boldsymbol{\phi}}{d\mathbf{z}}\right)^2 d\mathbf{z}}$$

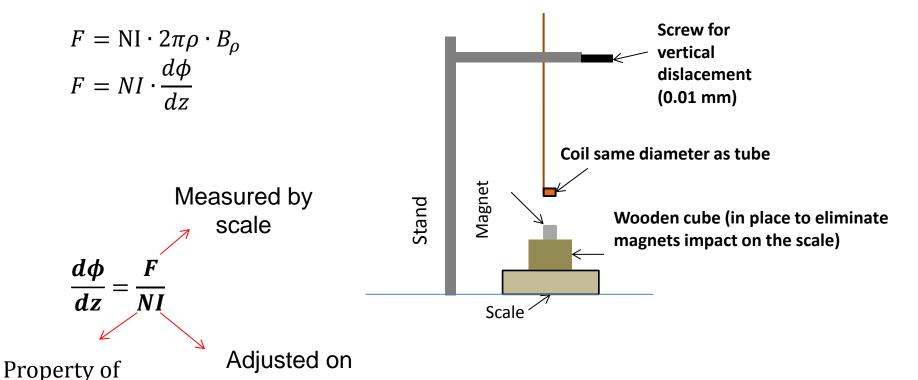
Determing magnetic flux change

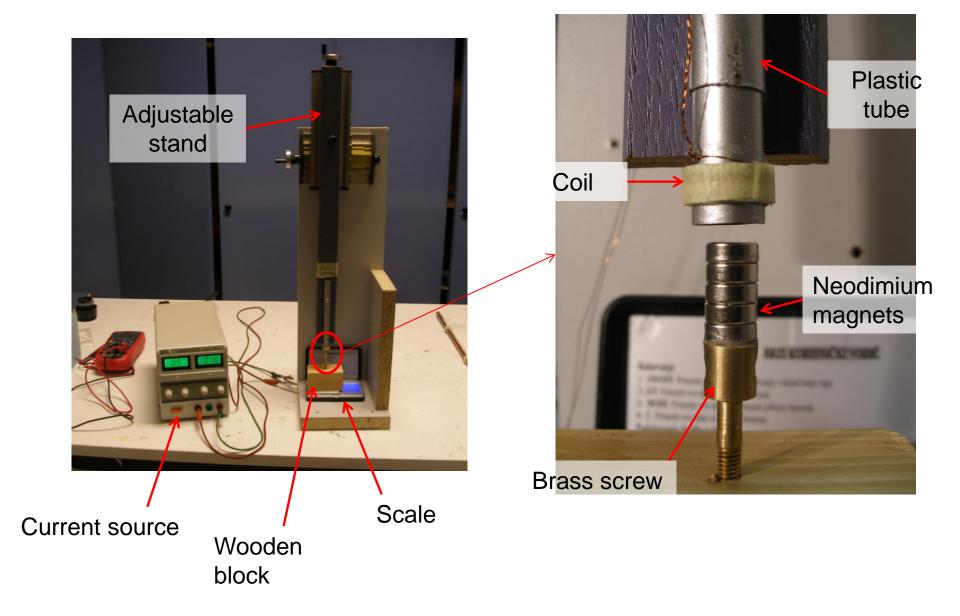
• Because $\frac{d\phi}{dz}$ can be difficult to calculate we decided to experimentaly determine it

current source

I = 1A (DC)

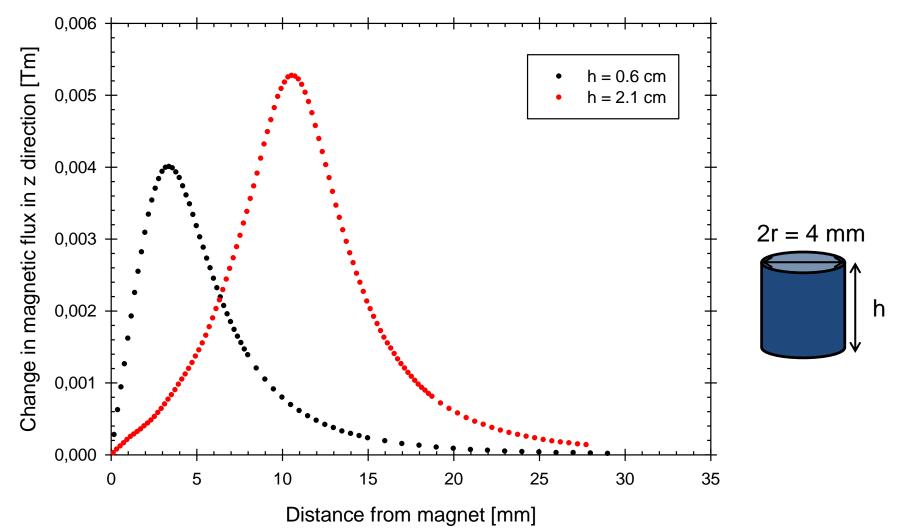
coil N = 40



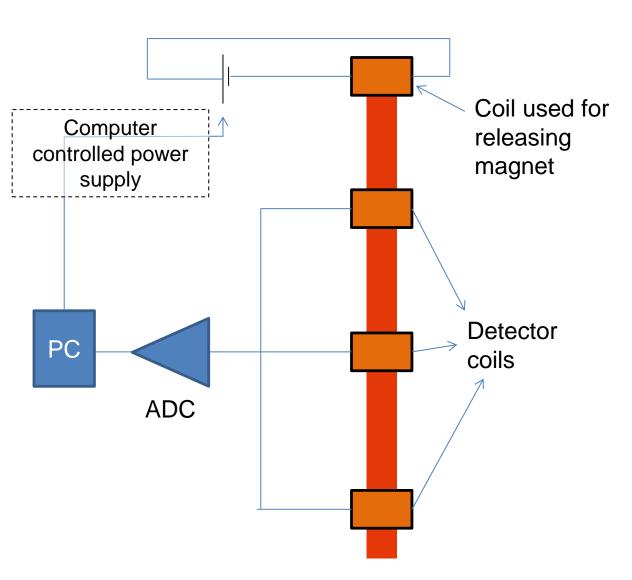


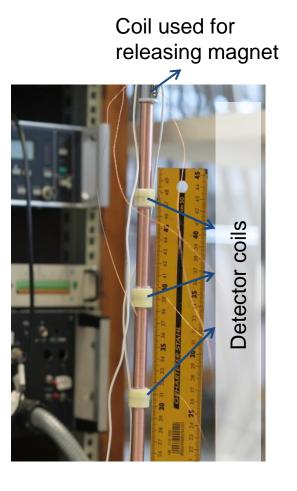
Example of obtained data

- magnetic flux change

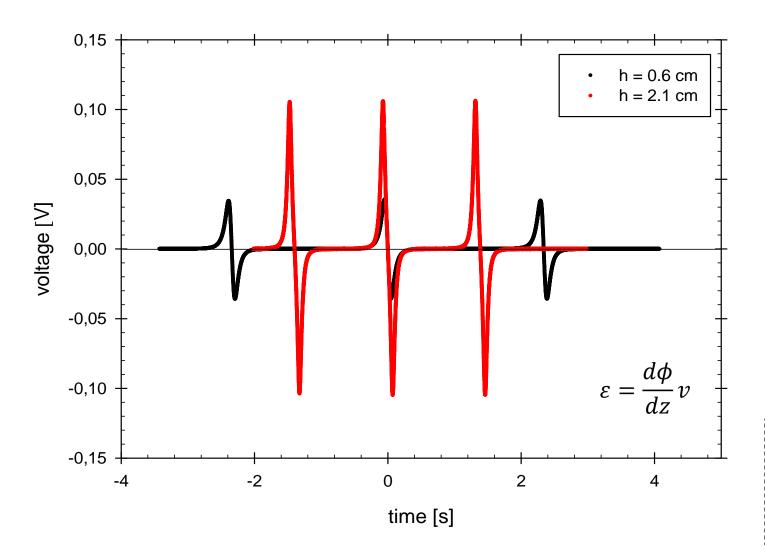


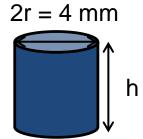
Velocity measurement





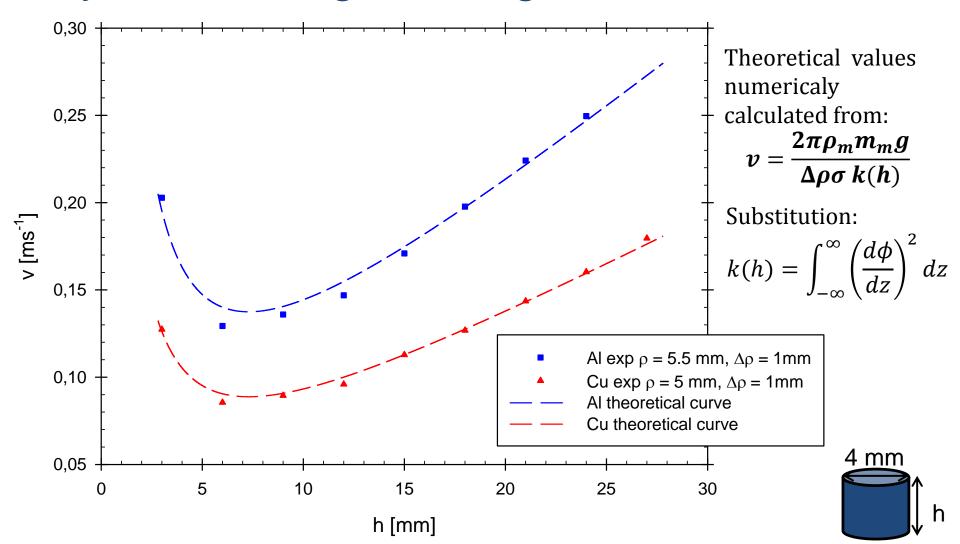
 Velocity measurement – coils detect passing magnet due to induction:





Copper 3 solenoids $\rho = 5.5 \, mm$ $\Delta \rho = 1 \, mm$

Dependence of terminal velocity on cylindrical magnets height – Cu and Al



Dipole

 Dipole magnetic field in z direction (measured from the magnet):

$$B_{z}(z,\rho) = \frac{\mu_{0}m}{4\pi} \left(\frac{2z^{2} - \rho_{m}^{2}}{\left(\sqrt{z^{2} + \rho_{m}^{2}}\right)^{5}} \right)$$

 If the magnet is far enough from the edges of the tube we can write

$$F_m = \frac{45(\mu_0 MV)^2 \sigma \Delta \rho \cdot v}{1024\pi \rho_m^4}$$

Terminal velocity - dipole

- Spherical magnet radius 2.5 mm
- Aluminium tube $\rho = 5 \ mm$, $\Delta \rho = 1 \ mm$

Theoretical prediction	Experimental result
$0.458 \ ms^{-1}$	$(0.452 \pm 0.012) ms^{-1}$

$$v_t = \frac{256dg}{15\pi\sigma(\mu_0 M)^2} \cdot \left(\frac{\rho_m}{r}\right)^3 \left(\frac{\rho_m}{\Delta \rho}\right)$$

d – magnet's density

r – radius of a magnet

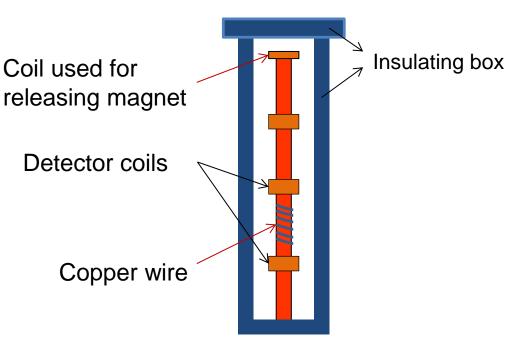
 v_t – theoretical velocity

Velocity - conductivity

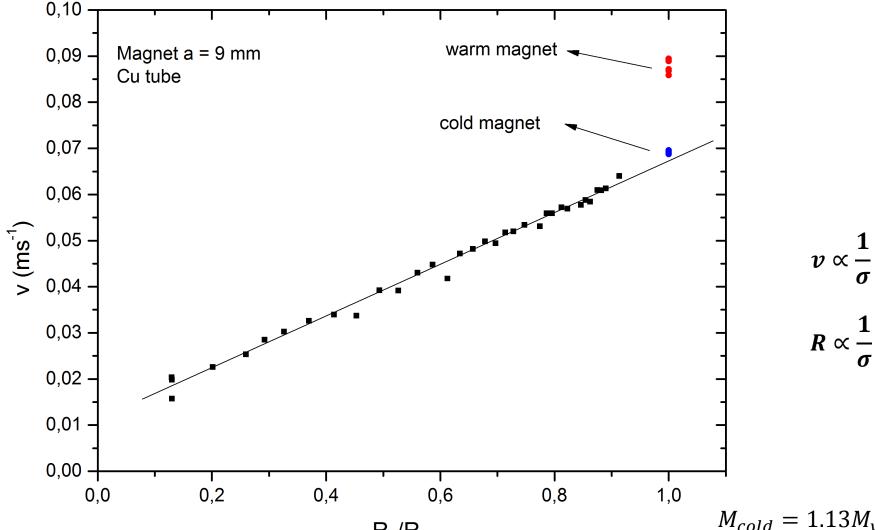
- Copper tube coled down to 77K in insulating box with liquid N2
- As tube warms up magnet is released and velocity measured
- Magnet was constantly kept on liquid nitrogen temperature \approx 77K (constant magnetization $M_{cold} = 1.13 M_{warm}$)

Conductivity measured directly - resistance of wire attached to

tube

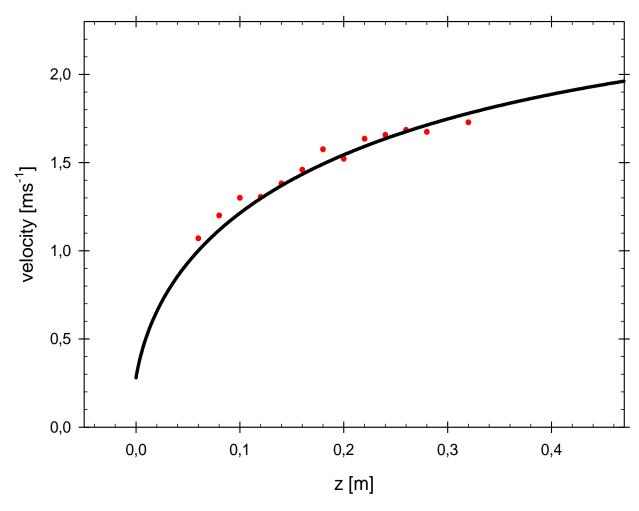


Dependence of final speed on material conductivity



 $M_{cold} = 1.13 M_{warm}$

Dependence of velocity on distance traveled



 Theoretical values calculated numerically from

$$v\frac{dv}{dz} + \frac{v}{\tau m} - g = 0$$

- Initial speed determined experimentally
- System of cylindrical magnet (h = 3 mm) and weight
- Velocity experimentaly determined by using $\varepsilon = \frac{d\phi}{dz}v \text{ relation}$

Conclusion

- Theoretical model developed
 - Quantitaive
 - No free parameters
 - Very good correlation with experiment
 - > Assumptions
 - No skin effect
 - Constant direction and magnitude of magnetization of magnet
 - Rotational symmetry of the tube
- Experiment
 - Parameters changed
 - Size and shape of magnet
 - Conductivity of material

Reference

- Valery S Cherkassky, Boris A Knyazev, Igor A Kotelnikov, Alexander A Tyutm; Eur. J. Phys.; Breaking of magnetic dipole moving through whole and cut conducting pipes
- Edward M. Purcell; Electricity and Magnetism Berkley physics course – volume 2, Second Edition; McGraw-Hill book company

IYPT 2014 TEAM OF CROATIA

THANK YOU

Reporter: Domagoj Pluščec

Current

$$I = \frac{\varepsilon}{R}$$

$$\varepsilon = -\frac{d\phi}{dt} = -\frac{d\phi}{dt} \frac{dz_0}{dz_0} = \frac{d\phi}{dz} v$$

$$R = \frac{1}{\sigma} \frac{l}{A} = \frac{1}{\sigma} \frac{2\pi \rho_m}{\Delta \rho \cdot dz}$$

$$\varepsilon = \frac{d\phi}{dz} v$$

 $\frac{d\phi}{dt}$ – time change of magnetic flux

 ε – induced voltage

σ – material conductivity

I – ring perimeter

A – area of ring cross section

R - restistance of the ring

 z_0 - magnets position

$$dI = \frac{\Delta \rho \sigma v}{2\pi \rho_m} \frac{d\phi}{dz} dz$$

 $\frac{d\phi}{dt}$ - can be expressed as space change because magnetic flux around the magnet doesn't depend on time

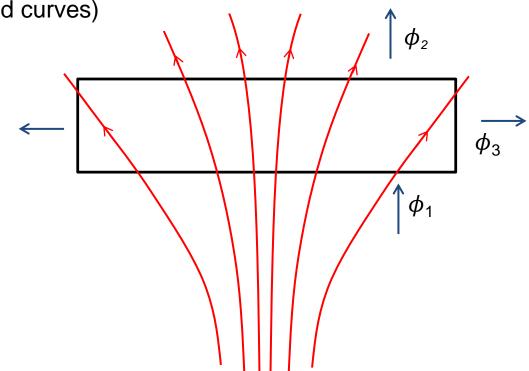
Determing B_p

• Maxwell equation $\vec{\nabla}\vec{B} = 0$ (magnetic field lines are closed curves)

$$\phi_1 = \phi_2 + \phi_3$$

$$\phi_3 = -d\phi$$
$$\phi_3 = 2\pi \rho_m B_\rho dz$$

$$B_{\rho} = -\frac{1}{2\pi\rho_{m}}\frac{d\phi}{dz}$$



 ϕ – magnetic flux

Schematic representation of the magnetic flux through a closed surface (disc shape)

Terminal velocity

 Terminal velocity is reached when gravitational force is equal to magnetic force

$$F_g = F_m$$

$$m_m g = \frac{\Delta \rho \sigma v_0}{2\pi \rho_m} \int_{-\infty}^{\infty} \left(\frac{d\phi}{dz}\right)^2 dz$$

Supstitution

$$k = \int_{-\infty}^{\infty} \left(\frac{d\phi}{dz}\right)^2 dz$$

$$\boldsymbol{v}_0 = \frac{2\pi\rho_m m_m g}{\Delta\rho\sigma k}$$

Assumptions used in derivation of model

- Tube is rotational symetrical in z direction
- Thin tube and the magnet is falling with low velocities (model does not take into consideration skin effect)

$$\delta = \sqrt{\frac{2}{\mu\sigma\omega}} \gg \rho_m; \ \omega \sim \frac{v}{\rho_m}$$

$$\delta = 38.3 \ mm > 5.5 \ mm$$

$$Cu; v = 0.1 ms^{-1}; \Delta\rho = 1 \ mm$$

 We didn't take into account case in which magnet rotates in such a way that direction of its magnetic moment changes

δ – skin depth ω – characteristic frequency

Detailed dipole model derivation 1/2

In theoretical modeling part we obtained

$$F_{mag} = \frac{\sigma \Delta \rho v_o}{2\pi \rho_m} \int_{z_1}^{z_2} \left(\frac{d\phi}{dz}\right)^2 dz$$

in this equation we need to find $\frac{d\phi}{dz}$ for dipole

Magnetic flux trought cross section of tube can be expressed as

$$\phi(z) = 2\pi \int_0^{\rho_m} B_z \rho \ d\rho$$

• And by using expresion for a field of dipole in z direction $B_z(z,\rho) = \frac{\mu_0 m}{4\pi} \left(\frac{2z^2 - \rho_m^2}{\left(\sqrt{z^2 + \rho_m^2}\right)^5}\right) \text{ we obtain magnetic flux in z direction}$ direction

Detailed dipole model derivation 2/2

Magnetic flux in z direction

$$\phi(z) = \frac{\mu_0 m}{2} \frac{\rho_m^2}{(z^2 + \rho_m^2)^{\frac{3}{2}}}$$

From that we derive magnetic flux change

$$\frac{d\phi(z)}{dz} = -\frac{3\rho_m z}{(z^2 + \rho_m^2)^{\frac{5}{2}}}$$

By knowing magnetic flux change we can obtain force

$$F_{mag} = \frac{9(\mu_0 m) 2\sigma \Delta \rho \cdot \rho m^3 \cdot v_0}{8\pi} \int_{z_1}^{z_2} \frac{z^2}{(z^2 + \rho_m^2)^5} dz$$

 If the magnet is far enough from the edges of the tube we can write

$$F_{mag} = \frac{45(\mu_0 MV)^2 \sigma \Delta \rho \cdot v_0}{1024\pi \rho_m^4}$$

Equation of motion with initial velocity

$$m\frac{dv}{dt} = mg - F_{mag}, v(0) = v_0$$

After solving for v we obtain:

$$v(t) = v_0 \cdot e^{-\frac{t}{\tau m}} + mg\tau(1 - e^{-\frac{t}{\tau m}})$$

Supstitution:

$$\tau = \frac{2\pi\rho_m m_{mag}}{\sigma\Delta\rho} \frac{1}{\int_{\mathbf{z}_1}^{\mathbf{z}_2} \left(\frac{d\boldsymbol{\phi}}{d\mathbf{z}}\right)^2 d\mathbf{z}}$$

Terminal velocity derived from energy conservation

 $P_{current} = P_{gravity}$

$$P_c = I^2 R$$

After substituing terms for current and resistance we obtain

$$P_c = \frac{\Delta \rho \sigma v_0^2}{2\pi \rho_m} k$$

$$v=rac{2\pi
ho_m m_m g}{\Delta
ho\sigma k}$$

 $P_g = mgv_0$

Supstitution

$$k = \int_{-\infty}^{\infty} \left(\frac{d\phi}{dz}\right)^2 dz$$

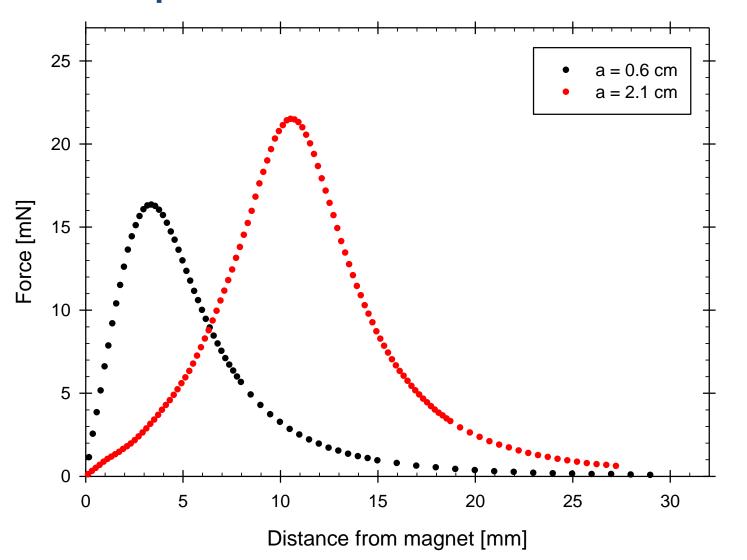
Apparatus properties - tubes

	Copper	Aluminium	
$ ho_m$	5.5 mm	5 mm	
Δho	1 mm	1 mm	
σ	$5.96 \cdot 10^7 Sm^{-1}$	$3.5 \cdot 10^7 Sm^{-1}$	
μ_r	0.99994	1.000022	

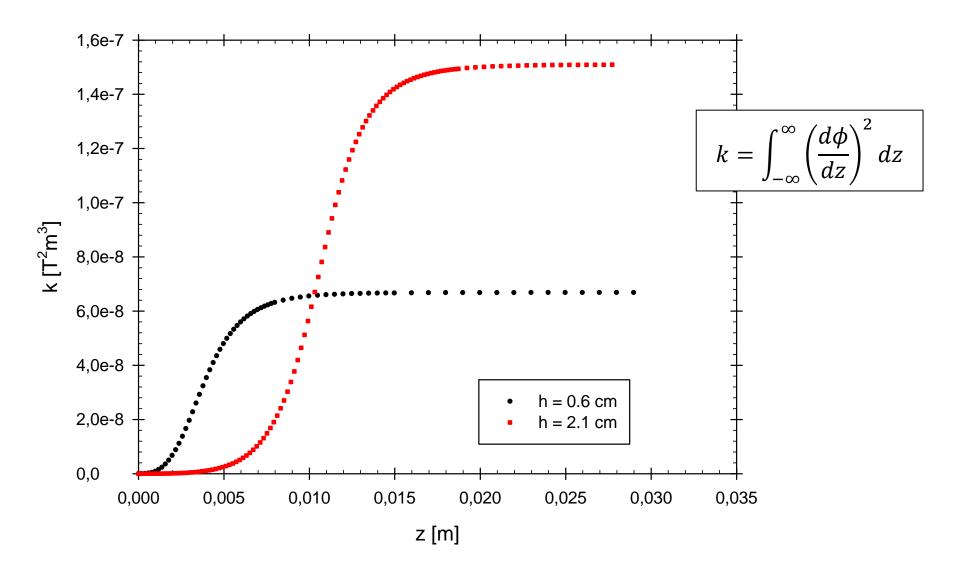
Apparatus properties - magnets

- Neodimium magnets
 - Magnetic permeability $\mu_r = 1.05$
 - Density $d = 7.5 \ gcm^{-3}$
 - $\mu_0 M \approx 1.1T$
 - > Cylindrical magnets
 - m = 1.13 g
 - 2r = 4mm; h = 3mm
 - > Spherical magnets
 - m = 0.50 g
 - $r = 2.5 \, mm$

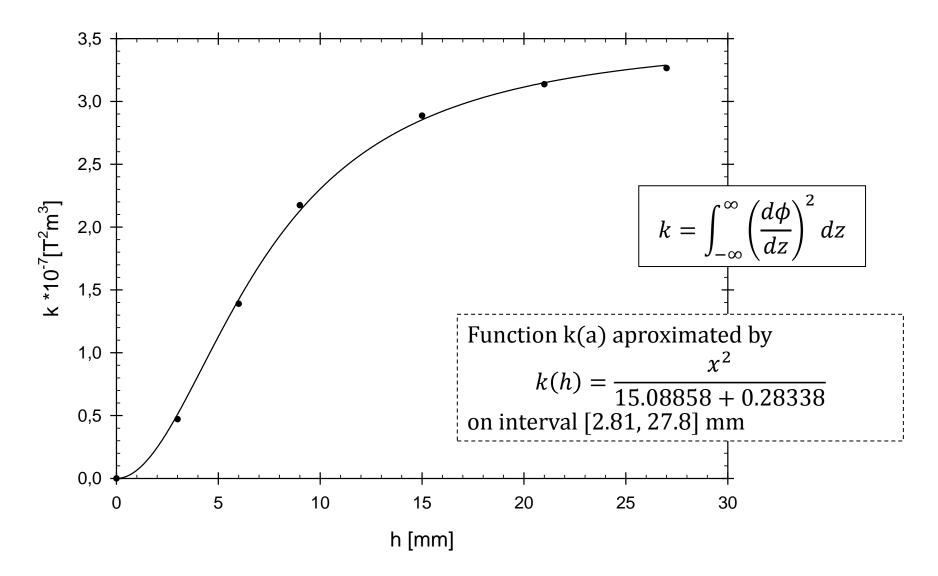
Example of obtained data - force



Determing magnetic flux change 2

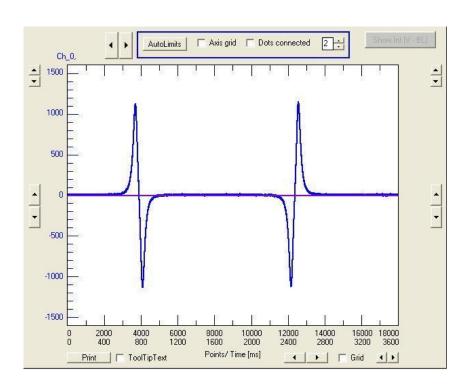


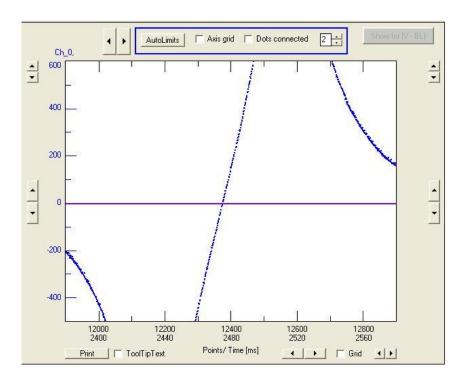
Determing magnetic flux change 3



Velocity measurement

Coils detect passing magnet due to induction:

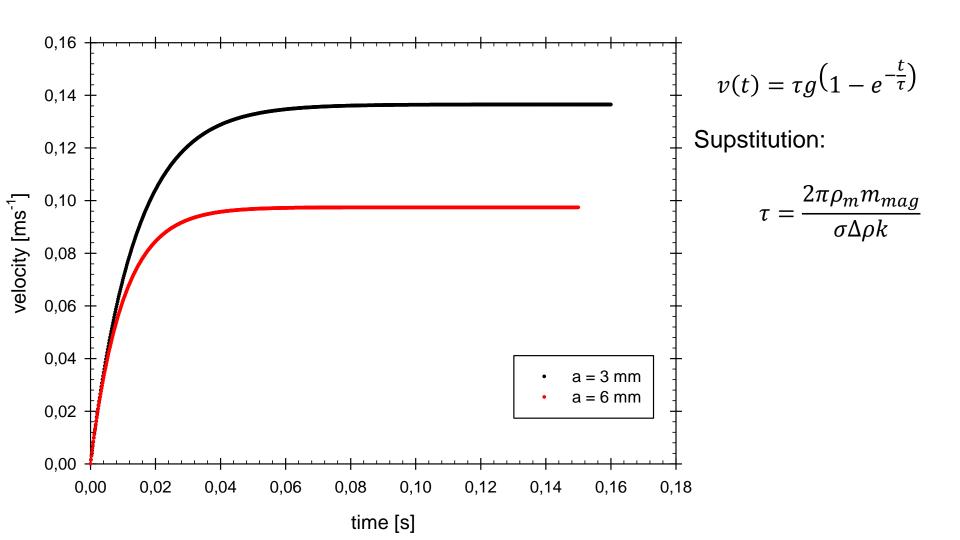




Aluminium, 2 solenoids

$$\varepsilon = \frac{d\phi}{dz}v$$

Theoretical change of velocity



Cooling - change of the magnetization of the magnet

$$v \propto \frac{1}{M^2}$$

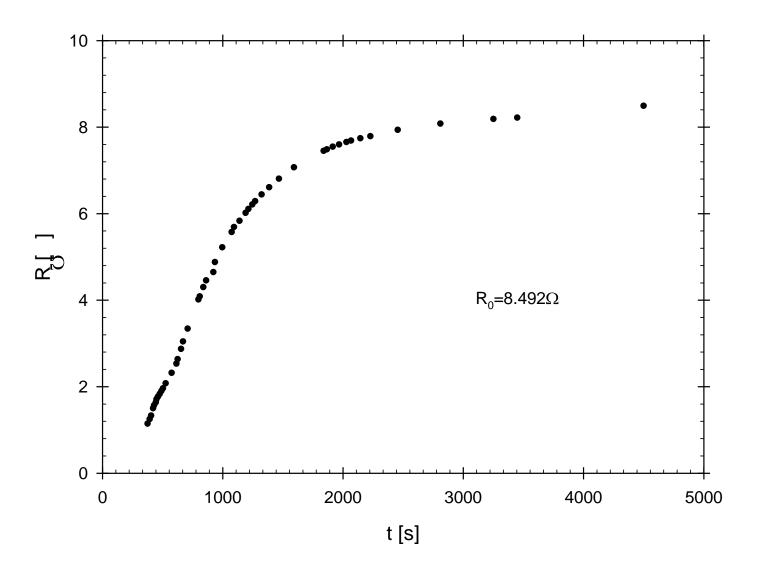
$$\frac{v_{warm}}{v_{cold}} = \frac{M_c^2}{M_w^2}$$

$$M_c = M_w \sqrt{\frac{v_{warm}}{v_{cold}}}$$

For our case:

$$M_c = 1.13 M_w$$

Heating of cooled tube



Cooling - change of tube dimesion

Change of radius of the pipe

$$A = A_0(1 + 2\alpha\Delta T)$$

$$\frac{\rho_1}{\rho_0} = \sqrt{1 + 2\alpha\Delta T}$$

•
$$\frac{\rho_1}{\rho_0} = \sqrt{1 + 2 \cdot 16.6 \cdot 10^{-6} K^{-1} \cdot 216 K} = 1.00357919468$$

$$\alpha_{cu} = 16.6 \cdot 10^{-6} K^{-1}$$

Tube with slit vs tube without slit

	Tube	Tube with slit	Without tube
Time	$(2.61 \pm 0.05)s$	$(1.68 \pm 0.19)s$	0.45 <i>s</i>

1 m long aluminium tube $\rho=1.25~cm$; $\Delta\rho=2~mm$ Magnet properties

- Cylindrical magnet
- 2r = 1 cm; h = 1cm

Superconductor

Skin effect

$$\cdot J = J_{s}e^{-\frac{d}{\delta}}$$