15. Oil stars

If a thick layer of a viscous fluid (e.g. silicone oil) is vibrated vertically in a circular reservoir, symmetrical standing waves can be observed. How many lines of symmetry are there in such wave patterns? Investigate and explain the shape and behaviour of the patterns.

IYPT 2014
Team Croatia
Reporter: Ilona Benko

Observations

- nonlinear standing waves in three dimensions„searching", sudden apperaring/disappearing of waves while changing frequency or amplitude by which resevoir is vibrated
- symmetries
- if volume of fluid in reservoir is increased, lower frequencies and amplitudes are needed to observe similar waves
- fluids of high viscosity should be used, otherwise there aren't any results
- if fluids of higher viscosity are used, more complicated waves and symmetries are being observed

Measuring viscosity

Measuring viscosity

- glycerol and silicon oil (Newtonian fluids)
- knowing the measured angular displacement and frequency (determined with strobescope) while rotating reservoir, viscosity of fluid in reservoir was calculated
- While doing measurements, we were adding known volume (height) of the fluid in reservoir
- derived equasions:

$$
\begin{aligned}
& \mu=\Delta \varphi v=\frac{\Delta \varphi}{\Delta \mathrm{V} * \mathrm{k}} \\
& \text { where } \Delta \mathrm{V}=\left(\mathrm{r}_{2}^{2}-\mathrm{r}_{1}^{2}\right) \pi \mathrm{h}
\end{aligned}
$$

Results - glycerol

Results - silicon oil

Mathematical model

General equasion of standing wave:

$$
\mathbf{y}(\mathbf{x}, \mathbf{t})=A \cos (k x-\omega t)
$$

Velocity of particle situated on place x in moment t :

$$
\mathbf{v}_{\mathbf{y}}(\mathbf{x}, \mathbf{t})=\mathbf{A} \omega \sin (k x-\omega t)
$$

General equasion for two dimensional wave:

$$
\frac{\partial^{2} \mathbf{u}(\mathbf{x}, \mathbf{y}, \mathbf{t})}{\partial \mathbf{x}^{2}}+\frac{\partial^{2} \mathbf{u}(\mathbf{x}, \mathrm{y}, \mathrm{t})}{\partial \mathbf{y}^{2}}-\frac{1}{\mathbf{v}^{2}} \frac{\partial^{2} \mathbf{u}(\mathbf{x}, \mathbf{y}, \mathrm{t})}{\partial \mathbf{t}^{2}}=\mathbf{0}
$$

solution of this equasion is $u(x, y, t)$ and gives $u s$ the deformation of point x, y in moment t

Applied equasion for two dimensional wave:

$$
\Delta=\frac{\partial^{2} \mathbf{u}(\mathbf{r}, \varphi, \mathbf{t})}{\partial \boldsymbol{r}^{2}}+\frac{\partial^{2} \mathbf{u}(\mathbf{r}, \varphi, \mathbf{t})}{\partial \varphi^{2}}-\frac{1}{\mathbf{v}^{2}} \frac{\partial^{2} \mathbf{u}(\mathbf{r}, \varphi, \mathbf{t})}{\partial \mathbf{t}^{2}}
$$

solution of this equasion is $\mathrm{u}(\mathrm{r}, \varphi, \mathrm{t})$ and gives us the deformation of point r, φ in moment t

$$
\mathrm{u} \sim \text { (radial part) }{ }^{*} \text { (angular part) }
$$

$$
\begin{gathered}
\phi(\varphi)=\left\{\begin{array}{l}
\sin \lambda \varphi \\
\cos \lambda \varphi
\end{array}\right. \\
\phi(\varphi+2 \pi)=\phi(\varphi) \rightarrow \\
\lambda=1,2,3, \ldots \in \mathrm{~N}
\end{gathered}
$$

Symmetries of third order

Symmetries of fourth order

$\mathrm{f}=9 \mathrm{~Hz}$
$A=1,75 \mathrm{~mm}$

Symmetries of sixth order

$\mathrm{f}=11 \mathrm{~Hz}$

$A=2,1 \mathrm{~mm}$

$\mathrm{f}=17,3 \mathrm{~Hz}$ $A=2,2 \mathrm{~mm}$

Symmetries of ninth order

(19)

Hexagons

$\mathrm{f}=15 \mathrm{~Hz}$
 $A=3,3 \mathrm{~mm}$

Conclusion

- existance, shape and behaviour of waves depends on:
- viscosity of fluid
- thickness of fluid in reservoir
- frequency and amplitude of oscillations
- size and shape of reservoir don't have any influence (Faraday; 1831.)
- waves can be described with Bessel's functions
- stability of different patterns depends on relative value of energy which is necessary too keep them in that state (Skeldon, Guidoboni; 2005.)

Conclusion

- we have found six stabile systems with different number of symmetry lines - 'starry' shapes:
- third order symmerty
- fourth order symmerty
- sixth order symmerty
- eight order symmerty
- ninth order symmerty
- hexagons

Thank you for your attention!

$$
f=16 \mathrm{~Hz}
$$

$$
A=2,2 \mathrm{~mm}
$$

Oil viscosity- low and high

 frequencies

Viscosity derivation

$$
\begin{aligned}
& \text { Velocity between } \\
& \text { walls } \\
& v(r)=A^{*} r+\frac{B}{r} \\
& A=\frac{r_{2}{ }^{2}}{r_{2}{ }^{2}-r_{1}{ }^{2}} * \Omega, B=-\frac{r_{1}{ }^{2} * r_{2}{ }^{2}}{r_{2}{ }^{2}-r_{1}{ }^{2}} * \Omega \\
& \rho=\frac{4 \pi * \mu}{\mathrm{k}} * \frac{\mathrm{r}_{1}{ }^{2} * r_{2}{ }^{2}}{r_{2}{ }^{2}-r_{1}{ }^{2}} * h * \Omega \\
& h=\frac{V}{\left(r_{2}{ }^{2}-r_{1}{ }^{2}\right) \pi}, \quad k=\tau / \mu \\
& \mu=\Delta \rho^{*} v \quad \mu=\frac{\Delta \rho}{\Delta V * k} \\
& \text { Reservoir with } \\
& \text { fluid } \\
& \text { Weiht on } \\
& \text { wire }
\end{aligned}
$$

