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Problem 13 

„A ball is placed in the middle of a rotating saddle. 

Investigate its dynamics and explain the conditions under 

which the ball does not fall off the saddle.” 
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Saddle - hyperbolic paraboloid 

𝑧 =
𝑥2

𝑎
−
𝑦2

𝑏
, a, b ∈ ℛ+ 



Motion example 
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Outline 
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Theoretical modeling 

 Analogy to Paul trap model 

 Stability conditions 

 Parameters 

Experimental aproach 

 Saddle construction 

 Ball releasing method 

 Ball properties 

 Determing rotational frequency 

 Recording balls motion 

Results 

 Ball trajectory 

 Dependence of stabilization time on frequency 

 Friction influence on stabilization 



Theoretical modeling 

• Paul trap analogy (R.I. Thompson, 2002)  

 

 

 

 

 

• Forces from rotational frame reference on the ball 

𝑚𝑎 = −𝑚Ω × Ω × 𝑟 − 2mΩ × 𝑣 − 𝛻𝑈(*) 
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Electric field potential Gravitational potential 

Alternating of electric 

potential 

Rotation of the saddle 

(*) as analogy we are neglecting friction, because it is difficult to solve analyticaly 

and we are going to disscus friction indepentendtly 

Centrifugal force Coriolis force Force caused by 

gravitational potential m – ball mass  

Ω – saddle angular velocity 

r – ball distance from center 

of the saddle 



Gravitational potential of the saddle 

 

𝑈 = 𝑚𝑔𝑧 = 𝑚𝑔
𝑥2

𝑎
−
𝑦2

𝑏
 

 

𝑈 =
𝑚

2
𝜔1

2𝑥2 −𝜔2
2𝑦2  

 
Supstitution: 

𝜔1
2 =

2𝑔

𝑎
 

𝜔2
2 =

2𝑔

𝑏
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• Assumptions: 

• If ball is stabilized it will be near the center of the saddle 

• Close to the center of the saddle we neglact the change in z direction 

(𝑦 , 𝑥 > 𝑧 ) 

 

• Using assumptions and projecting on (x,y) plane we obtain: 

𝑥 − 2Ω𝑦 + 𝜔1
2 − Ω2 𝑥 = 0 

𝑦 + 2Ω𝑥 − 𝜔2
2 + Ω2 𝑦 = 0 

 

• For equations ansatz is in the form of 𝑥 = 𝑐1𝑒
−𝑖𝜆𝑡, 𝑦 = 𝑐2𝑒

−𝑖𝜆𝑡  

• All solutions for 𝜆 must be real for keeping ball stabilized because then 

solution of the equations is periodic function (Euler formula 𝑒𝑖𝑥 = 𝑐𝑜𝑠𝑥 +
𝑖𝑠𝑖𝑛𝑥) 

• For lambda we obtain:  
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𝜆1,2
2 =

𝜔2
2 − 𝜔1

2 − 2Ω2

2
±
1

2
𝜔1
2 + 𝜔2

2 2 + 8Ω2(𝜔1
2 − 𝜔2

2) 
>0 

>0 



Stability conditions 

• Ω = 0 − point (0,0) 

• Unstable equilibrium 
𝜕𝑈

𝜕𝑥
=

𝜕𝑈

𝜕𝑦
= 0 

• In x direction stable equilibrium 
𝜕2𝑈

𝜕𝑥2
> 0 

• In y direction unstable equilibrium 
𝜕2𝑈

𝜕𝑦2
< 0 

 

• Ω > 0 

• 𝜔2
2 ≤ 𝜔1

2≤ Ω2 

 

 or 

• 𝜔1
2 ≤ 𝜔2

2≤ 3𝜔1
2(*) and 𝜔1

2 ≤ Ω2 ≤ 
𝜔1

2+𝜔2
2 2

8(𝜔1
2−𝜔2

2)
 

8 

Supstitution: 

𝜔1
2 =

2𝑔

𝑎
 

𝜔2
2 =

2𝑔

𝑏
 

(*)obtained by investigating saddle curvature properties - Oleg N. Kirillov, 2010 



Parameters 
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• Saddle shape 

• Rotating frequency 

• Friction impact 

• Moment of inertia of the ball (influence of the 
rotation of the ball) 



Experiment 

• Saddle construction  

• Saddle made by CNC miling machine 

• Saddle 𝑧 =
𝑥2

21
−

𝑦2

21
 cm , saddle radius 7.5 cm 

 

• Ball releasing 

• Metal balls  

Released by a coil  
(interuption of current caused  
ball drop) 

Balls with radius 8.5 mm and 12.5 mm 

 

• Plastic and rubber balls 

Released by hand 

Balls with radius: 13 mm, 20 mm,  
 37.5 mm  
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Experiment 

• Determing frequency of saddle 

rotation 

• Determined with stroboscope 

• Frequency of rotation of constructed 

turntable in range from 1 Hz to 5.5 Hz 

 

• Determing ball motion 

• Motion recorded with high speed camera  

(120 fps) 

 Tracked in program for video analysis 

ImageJ 

• Center and axis of symetry of the saddle 

were determined by marks on the saddle  

11 



12 

𝑓 = 1.71 𝐻𝑧 

Metal ball 
𝑟 = 8.5 mm 
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Ball trajectory - labaratory frame reference 
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Ball trajectory - rotational frame reference 
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1.54 Hz 



Friction impact – theoretical analysis 

• We assume that when the ball is moving on the saddle 

that it is rolling 

• For ball near the center we neglect it’s movement in z 

direction (𝑦 , 𝑥 > 𝑧 ) 

• We aproximated friction force in forme of 𝐹 = 𝜇𝑚𝑔
𝑣

|𝑣|
 

where 𝜇 is coefficient of rolling friction 

• 𝜇~0.001* 

• We solved numericaly equations from our model and 

numericaly added friction force and observed how it 

influences our model 
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*Physics and Chemistry of Interfaces; Hans-Jürgen Butt, Karlheinz Graf, 2003 



𝜇 = 0.005; f = 1.6 Hz 
picture dimensions 15x15 cm 

𝜇 = 0; f = 1.6 Hz 
picture dimensions 0.9x0.9 cm 
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Conclusion 

We constructed a saddle and experimental setup for 

rotation of a saddle and system for releasing metal balls 

 

Simple theoretical model for point mass 

• Stabilization conditions: 

 𝜔2
2 ≤ 𝜔1

2≤ Ω2  or 

 𝜔1
2 ≤ 𝜔2

2≤ 3𝜔1
2 and 𝜔1

2 ≤ Ω2 ≤  
𝜔1

2+𝜔2
2 2

8(𝜔1
2−𝜔2

2)
 

• Assumption:  
• 𝑦 , 𝑥 > 𝑧  for the ball near the center of the saddle 

 

We discussed friction impact on ball stability 

Friction will always destabilises ball on the rotating saddle 
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Stroboscopic picture of the balls motion 
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Ball trajectory – rotational frame reference 
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𝜇 = 0.005; 𝑓 = 1.71 𝐻𝑧 



Ball trajectory - labaratory frame reference 
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𝜇 = 0.005; 𝑓 = 1.71 𝐻𝑧 
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𝑥 − 2Ω𝑦 + 𝜔1
2 − Ω2 𝑥 = 0 

𝑦 + 2Ω𝑥 − 𝜔2
2 + Ω2 𝑦 = 0 

 
−𝜆2𝑐1 + 2𝑐2𝜆Ω𝑖 + 𝜔1

2 − Ω2 𝑐2 = 0 
𝜆2𝑐2 + 2𝑐1𝜆Ω𝑖 + 𝜔2

2 + Ω2 𝑐2 = 0 
 
Det=0 
 

𝜆4 + 𝜔2
2  − 𝜔1

2 − 2Ω2 𝜆2 − 𝜔1
2 − Ω2 𝜔2

2 + Ω2 = 0 
 

𝜆1,2
2 =

𝜔2
2 − 𝜔1

2 − 2Ω2

2
±
1

2
𝜔1
2 + 𝜔2

2 2 + 8Ω2(𝜔1
2 −𝜔2

2) 

 
 
 
 


