PROBLEM 13. ROTATING SADDLE

Reporter: Domagoj Pluščec

Problem 13

„A ball is placed in the middle of a rotating saddle. Investigate its dynamics and explain the conditions under which the ball does not fall off the saddle."

$$
\begin{aligned}
& \text { Saddle } \text { - hyperbolic paraboloid } \\
& \qquad z=\frac{x^{2}}{a}-\frac{y^{2}}{b}, \mathrm{a}, \mathrm{~b} \in \mathcal{R}^{+}
\end{aligned}
$$

Motion example

Outline

Theoretical modeling

> Analogy to Paul trap model
> Stability conditions
> Parameters

Experimental aproach

> Saddle construction
$>$ Ball releasing method
> Ball properties
$>$ Determing rotational frequency
> Recording balls motion

Results

$>$ Ball trajectory
$>$ Dependence of stabilization time on frequency
$>$ Friction influence on stabilization

Theoretical modeling

- Paul trap analogy (R.I. Thompson, 2002)

Electric field potential \longrightarrow Gravitational potential
Alternating of electric \longrightarrow Rotation of the saddle potential

- Forces from rotational frame reference on the ball

$$
m \vec{a}=-\underbrace{m \vec{\Omega} \times(\vec{\Omega} \times \vec{r})}-2 \mathrm{~m} \vec{\Omega} \times \vec{v}-\underbrace{\vec{\nabla} U}\left(^{*}\right)
$$

Centrifugal force Coriolis force Force caused by gravitational potential
m - ball mass
Ω - saddle angular velocity
r t*bał diflathege fremareqnegrecting friction, because it is difficult to solve analyticaly
of the wadde going to disscus friction indepentendtly

Gravitational potential of the saddle

$$
\begin{gathered}
U=m g z=m g\left(\frac{x^{2}}{a}-\frac{y^{2}}{b}\right) \\
U=\frac{m}{2}\left(\omega_{1}^{2} x^{2}-\omega_{2}^{2} y^{2}\right)
\end{gathered}
$$

Supstitution:

$$
\begin{aligned}
& \omega_{1}^{2}=\frac{2 g}{a} \\
& \omega_{2}^{2}=\frac{2 g}{b}
\end{aligned}
$$

- Assumptions:
- If ball is stabilized it will be near the center of the saddle
- Close to the center of the saddle we neglact the change in z direction ($\dot{y}, \dot{x}>\dot{z}$)
- Using assumptions and projecting on (x, y) plane we obtain:

$$
\begin{aligned}
& \ddot{x}-2 \Omega \dot{y}+\left(\omega_{1}^{2}-\Omega^{2}\right) x=0 \\
& \ddot{y}+2 \Omega \dot{x}-\left(\omega_{2}^{2}+\Omega^{2}\right) y=0
\end{aligned}
$$

- For equations ansatz is in the form of $x=c_{1} e^{-i \lambda t}, y=c_{2} e^{-i \lambda t}$
- All solutions for λ must be real for keeping ball stabilized because then solution of the equations is periodic function (Euler formula $e^{i x}=\cos x+$ isinx)
- For lambda we obtain:

$$
\lambda_{1,2}^{2}={\frac{\omega_{2}^{2}-\omega_{1}^{2}-2 \Omega^{2}}{2} \pm \frac{1}{2} \sqrt{\left(\omega_{1}^{2}+\omega_{2}^{2}\right)^{2}+8 \Omega^{2}\left(\omega_{1}^{2}-\omega_{2}^{2}\right)}>0}^{\overbrace{-}}
$$

Stability conditions

- $\Omega=0-$ point $(0,0)$
- Unstable equilibrium $\frac{\partial U}{\partial x}=\frac{\partial U}{\partial y}=0$
- In x direction stable equilibrium $\frac{\partial^{2} U}{\partial x^{2}}>0$
- In y direction unstable equilibrium $\frac{\partial^{2} U}{\partial y^{2}}<0$
- $\Omega>0$
- $\omega_{2}{ }^{2} \leq \omega_{1}{ }^{2} \leq \Omega^{2}$
or
- $\omega_{1}{ }^{2} \leq \omega_{2}{ }^{2} \leq 3 \omega_{1}{ }^{2}\left(^{*}\right)$ and $\omega_{1}{ }^{2} \leq \Omega^{2} \leq \frac{\left(\omega_{1}{ }^{2}+\omega_{2}{ }^{2}\right)^{2}}{8\left(\omega_{1}{ }^{2}-\omega_{2}{ }^{2}\right)}$

Supstitution:
$\omega_{1}^{2}=\frac{2 g}{a}$
$\omega_{2}^{2}=\frac{2 g}{b}$
(*)obtained by investigating saddle curvature properties - Oleg N. Kirillov, 2010

Parameters

- Saddle shape
- Rotating frequency
- Friction impact
- Moment of inertia of the ball (influence of the rotation of the ball)

Experiment

- Saddle construction
- Saddle made by CNC miling machine
- Saddle $z=\frac{x^{2}}{21}-\frac{y^{2}}{21}$ [cm], saddle radius 7.5 cm
- Ball releasing
- Metal balls
>Released by a coil (interuption of current caused ball drop)
> Balls with radius 8.5 mm and 12.5 mm
- Plastic and rubber balls
$>$ Released by hand
>Balls with radius: $13 \mathrm{~mm}, 20 \mathrm{~mm}$, 37.5 mm

Experiment

- Determing frequency of saddle rotation
- Determined with stroboscope
- Frequency of rotation of constructed turntable in range from 1 Hz to 5.5 Hz

- Determing ball motion
- Motion recorded with high speed camera (120 fps)
- Tracked in program for video analysis ImageJ
- Center and axis of symetry of the saddle were determined by marks on the saddle

Ball trajectory - labaratory frame reference

Ball trajectory - rotational frame reference

Dependence of stabilization time on saddlle frequency

Friction impact - theoretical analysis

- We assume that when the ball is moving on the saddle that it is rolling
- For ball near the center we neglect it's movement in z direction ($\dot{y}, \dot{x}>\dot{z}$)
- We aproximated friction force in forme of $\vec{F}=\mu m g \frac{\vec{v}}{|v|}$ where μ is coefficient of rolling friction
- $\mu \sim 0.001^{*}$
- We solved numericaly equations from our model and numericaly added friction force and observed how it influences our model
*Physics and Chemistry of Interfaces; Hans-Jürgen Butt, Karlheinz Graf, 2003

$$
\mu=0 ; \mathrm{f}=1.6 \mathrm{~Hz}
$$

picture dimensions $0.9 \times 0.9 \mathrm{~cm}$

$$
\mu=0.005 ; \mathrm{f}=1.6 \mathrm{~Hz}
$$

picture dimensions $15 \times 15 \mathrm{~cm}$

Conclusion

-We constructed a saddle and experimental setup for rotation of a saddle and system for releasing metal balls
>Simple theoretical model for point mass

- Stabilization conditions:
- $\omega_{2}{ }^{2} \leq \omega_{1}{ }^{2} \leq \Omega^{2}$ or
- $\omega_{1}{ }^{2} \leq \omega_{2}{ }^{2} \leq 3 \omega_{1}{ }^{2}$ and $\omega_{1}{ }^{2} \leq \Omega^{2} \leq \frac{\left(\omega_{1}{ }^{2}+\omega_{2}{ }^{2}\right)^{2}}{8\left(\omega_{1}{ }^{2}-\omega_{2}{ }^{2}\right)}$
- Assumption:
- $\dot{y}, \dot{x}>\dot{z}$ for the ball near the center of the saddle
>We discussed friction impact on ball stability
>Friction will always destabilises ball on the rotating saddle

Literatura

1. Johan Nilsson; Trapping massless Dirac particles in a rotating saddle; Phys. Rev. Lett. 111, 100403 (2013)
2. R.I.Thompson, T.J. Harmon, M.G. Ball; The rotating saddle trap: a mechanical analogy to RF-electricquadrupole ion trapping?; Can. J. Phys. 80, 1433-1448 (2002)
3. Oleg N. Kirillov, Brouwer's problem on a heavy particle in a rotating vessel: wave propagation, ion traps, and rotor dynamics; Physics Letters A 375, 1653-1660 (2011)
4. Physics and Chemistry of Interfaces. Hans-Jürgen Butt, Karlheinz Graf, Michael Kappl, 2003

Stroboscopic picture of the balls motion

IYPT 2014 CROATIAN TEAM

THANK YOU

Reporter: Domagoj Pluščec

Ball trajectory - rotational frame reference

$$
\mu=0.005 ; f=1.71 \mathrm{~Hz}
$$

Ball trajectory - labaratory frame reference

$$
\mu=0.005 ; f=1.71 \mathrm{~Hz}
$$

$$
\begin{gathered}
\ddot{x}-2 \Omega \dot{y}+\left(\omega_{1}^{2}-\Omega^{2}\right) x=0 \\
\ddot{y}+2 \Omega \dot{x}-\left(\omega_{2}^{2}+\Omega^{2}\right) y=0 \\
-\lambda^{2} c_{1}+2 c_{2} \lambda \Omega i+\left(\omega_{1}^{2}-\Omega^{2}\right) c_{2}=0 \\
\lambda^{2} c_{2}+2 c_{1} \lambda \Omega i+\left(\omega_{2}^{2}+\Omega^{2}\right) c_{2}=0
\end{gathered}
$$

Det $=0$

$$
\begin{gathered}
\lambda^{4}+\left(\omega_{2}^{2}-\omega_{1}^{2}-2 \Omega^{2}\right) \lambda^{2}-\left(\omega_{1}^{2}-\Omega^{2}\right)\left(\omega_{2}^{2}+\Omega^{2}\right)=0 \\
\lambda_{1,2}^{2}=\frac{\omega_{2}^{2}-\omega_{1}^{2}-2 \Omega^{2}}{2} \pm \frac{1}{2} \sqrt{\left(\omega_{1}^{2}+\omega_{2}^{2}\right)^{2}+8 \Omega^{2}\left(\omega_{1}^{2}-\omega_{2}^{2}\right)}
\end{gathered}
$$

