
14 . Rubber Motor 

‘A twisted rubber band stores energy and 
can be used to power a model aircraft for 

example. Investigate the properties of such 
an energy source and how its power output 

changes with time.’ 
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Properties of rubber materials 

• elastomer  viscoelasticity 

• Mullins’ effect 

–  hysteresis while stretching, entire energy isn’t 
restored, waste in a form of thermal energy 

• structure coiled molecular chains, polymers 
(covalent bonds) whose entropy decreases when 

rubber band is being stretched* 

– unstretched rubber band is in the state of maximum 
entropy 

* I.M. Ward, J. Sweeney: An Introduction to the Machanical Properties of    
Solid Polymers 
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Observation of how does motor work 
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Experimental setup 
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Processing measurements 

• coiling and uncoiling of rubber band recorded in 
Audacity (.wav) 

• than reformatted into 

    .txt files to continue 

    further processing in 

    our programs we made for analysis 

• after processing in those programs, change of 
angle in time is known and angular velocity, 
kinetic energy, force and power output can be 
calculated 5 



Mathematical model of osilaroty 
motion 
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φ – angle [rad] 

ω – angular velocity [rad/s] 

f – frequency [Hz] 

τ – torque [Nm] 

k – force constant (for 5 threads =  

5,35 *10-5) [Nm/rad] 

I - moment of inertia (7,8 * 10-4 )[kgm2] 

Ek  - kinetic energy[J] 

Ep – potential energy[J] 

P - power[Watt] 

 

𝜏 𝜑 = −𝑘𝜑 

𝐼
𝑑2𝜑

𝑑𝑡2
= 𝜏 

 Without friction: 

𝐼
𝑑2𝜑

𝑑𝑡2
+ 𝑘𝜑 = 0 

General solution of this equasion for mechanical 

oscillator is: 

 𝜑 𝑡 = 𝜑0 cos 𝜔0𝑡 − 𝜃  

𝜃 is starting phase, and  𝜔0 =
𝑘

𝐼
= 2𝜋𝑓 



Graph: first 
derivation of 

angular 
velocity/time vs 
angle in radians 
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ω0  - line coefficient 
of proportionality 

Measuring ω0  



Mathematical model of oscilaroty 
motion 
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φ – angle[rad] 

ω – angular velocity [rad/s] 

f – frequency [Hz] 

τ – torque [Nm] 

k – force constant (for 5 threads =  

5,35 *10-5) [Nm/rad] 

I - moment of inertia (7,8 * 10-4 )[kgm2] 

Ek  - kinetic energy[J] 

Ep – potential energy[J] 

P - power[Watt] 

𝛿 – friction faktor 

 

 

Damped oscillations: 

𝐼
𝑑2𝜑

𝑑𝑡2
+ 𝛾
𝑑𝜑

𝑑𝑡
+ 𝑘𝜑 = 0 

General solution of this equasion for mechanical 

oscillator is: 

 𝜑 𝑡 = 𝜑0𝑒
−𝛿𝑡 cos 𝜔1𝑡 − 𝜃  

𝜃 is starting phase, 𝜔0 =
𝑘

𝐼
= 2𝜋𝑓,  

𝛿 =
𝛾

2𝐼
, 

 𝜔1 = 𝜔0
2 − 𝛿2 



Mathematical model of osilaroty 
motion 
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φ – angle[rad] 

ω – angular velocity [rad/s] 

f – frequency [Hz] 

τ – torque [Nm] 

k – force constant (for 5 threads =  

5,35 *10-5) [Nm/rad] 

I - moment of inertia (7,8 * 10-4 )[kgm2] 

Ek  - kinetic energy[J] 

Ep – potential energy[J] 

P - power[Watt] 

 

Energy and power: 
 

Ek =
1

2
 I ω2 

 

𝐸𝑝 =
1

2
 k φ2 

 

 

P =
𝑑𝐸

𝑑𝑡
 



Result analysis 
• bundle of  5 rubber threads 

• bundle length: 16 cm 

• nubmer of coils: 61,5 

10 Graph 1: angle vs time 



Result analysis 
• bundle of  5 rubber threads 

• bundle length: 16 cm 

• nubmer of coils: 61,5 

 

11 Graph 2: anglular velocity vs time 



Result analysis 
• bundle of  5 rubber threads 

• bundle length: 16 cm 

• nubmer of coils: 61,5 

 

12 Graph 3: energy vs time 



Result analysis 
• bundle of  5 rubber threads 

• bundle length: 16 cm 

• nubmer of coils: 61,5 

13 Graph 4: power vs time 



Analysis of different number of coils 

14 
l=18 cm 
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Analysis of different number of coils 
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Analysis of different bundle lengths 
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Analysis of different bundle lengths 
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Analysis of different number of threads 
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Analysis of different number of threads 
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New setup and measuring torque 
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Conclusion 
• energy which moves the motor comes from kinetic and 

potential energy stored in molecules of which rubber 
material is consisted 

• while in motion, damping slows and finally stops motor 
• hysteresis  energy loss happens because of heating 

and friction in oscillatory motion 
• more power can be gained by: 

– using bundle made of maximum number of rubber threads 
– using longer bundle 
– increasing rubber tension or number of coils 

• when tension is increased, more energy is gained in 
exact time interval 

• hysteresis also rapidly increases as we gain more 
energy from motor 
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