Invent Yourself

Matej Badin

Task

It is known that some electrical circuits exhibit chaotic behaviour.

Build a simple circuit with such a property, and investigate its behaviour.

Chaos?

Deterministic systems

"Chaotic"
Always the same output from the same initial conditions
(Double pendulum)

Stochastic systems

"Random"
Future state cannot be determined from current
(only probability)

[http:// en.wikipedia.org/ wiki/ File:Translational_motion.gif
(Thermal motion)

BUILDIN G A CIRCUIT

Requirements For Such a Circuit

System of linear differential equations doesn't lead to chaos
Nonlinear element
System only with R,L,C will lead to damped oscillations
Active element

For simplicity - Nonlinear active resistor

Requirements for Nonlinear Resistor

- Active resistor Let's look at I-V Characteristic:
- 2 or more Unstable equilibria positions (Intersection with circuit load line)

Rest of the circuit
Piecewise forsimplicity

O nly Resistance plays role (In DC Equilibrium)

N onlinear Active Resistor - Chua's Diode

Using parameters [V. Siderskiy - Chuacircuits.com]:

$$
\begin{gathered}
R_{1}=220 \Omega \\
R_{2}=220 \Omega \\
R_{3}=2.2 \mathrm{k} \Omega \\
R_{4}=22 \mathrm{k} \Omega \\
R_{5}=22 \mathrm{k} \Omega \\
R_{6}=3.3 \mathrm{k} \Omega \\
U_{ \pm}= \pm 9 \mathrm{~V}
\end{gathered}
$$

Calculation of I-V
Characteristic

I-V Characteristic of Chua's Diode

Voltage [V]

Requirements For Such a Circuit

System of linear differential equations doesn't lead to chaos
Nonlinear element
System only with R,L,C will lead to damped oscillations

Poincaré-Bendixson theorem ${ }^{[1]}$
Active element
Continuous system with less than 3 independent state variables cannot be chaotic

Minimum three energy storage (L,C) elements

Requirements For Such a Circuit

Known mathematical theorem ${ }^{[1]}$
System with less than 3 independent state variables
cannot be chaotic

Don't forget we need another resistance (Unstable equilibrium)

Topological Problem

How to put 5 elements into 3 loops?

Hh H

We don't want:

Open Circuit (in DC Equilibrium)

Short Circuit (in DC Equilibrium)

Parallel Capacitors or Resistors

O nly two options:

The Simplest Chaotic Circuit - Chua's

 Chua, L. O. (1992) The Genesis of Chua's Circuit.

Governing Equations

Kirchhoff laws for junctions:
$R \quad$ Linear resistance
$I_{(V)}$ I-V Characteristic
$C_{1}, C_{2} \quad$ Capacitances
L Inductance

$$
\begin{gathered}
\dot{V}_{1} C_{1}+I_{\left(V_{1}\right)}=\frac{\left(V_{2}-V_{1}\right)}{R} \\
I_{L}=\frac{\left(V_{2}-V_{1}\right)}{R}+\dot{V}_{2} C_{2}
\end{gathered}
$$

Kirchhoff law for loop :

$$
L \dot{I}_{L}=-V_{2}
$$

System of three differential equations

Resulting Circuit

Parameters from [V. Siderskiy - Chuacircuits.com]:

Resulting Circuit

Parameters from [V. Siderskiy - Chuacircuits.com]:

Resulting Circuit

Parameters from [V. Siderskiy - Chuacircuits.com]:

Resulting Circuit

Changing inductance

CHAOTIC BEHAVIOUR

How To Study Chaos?

Phase Space

Bifurcation Diagrams

Look at possible states of a system for given parameters

Analog oscilloscope in XY mode

How many different states for different parameters

Apparatus

Apparatus

> Analog oscilloscope (XY mode)

Cha's circuit

Camera
(Exposition 1/ 10 s)
Filtering light from environment

Experiments

- Varying:
- Linear resistance
- Capacitance
- Inductance (Resistance)

Phase Space

$R=1866 \Omega \quad L=27,44 \mathrm{mH}$

Phase Space

$$
R=1833 \Omega \quad L=27,44 \mathrm{mH}
$$

Biffurcation

$$
R=1778 \Omega \quad L=27,44 \mathrm{mH}
$$

Phase Space

$$
R=1763 \Omega \quad L=27,44 \mathrm{mH}
$$

$$
R=1758 \Omega \quad L=27,44 \mathrm{mH}
$$

Biffurcations

$$
R=1756 \Omega \quad L=27,44 \mathrm{mH}
$$

Biffurcations

$$
R=1754 \Omega \quad L=27,44 \mathrm{mH}
$$

Rössler attractor $R=1750 \Omega \quad L=27,44 \mathrm{mH}$

Phase Space

$$
R=1750 \Omega \quad L=27,44 \mathrm{mH}
$$

Phase Space

$$
R=1746 \Omega \quad L=27,44 \mathrm{mH}
$$

Phase Space

$$
R=1742 \Omega \quad L=27,44 \mathrm{mH}
$$

Phase Space

$$
R=1728 \Omega \quad L=27,44 \mathrm{mH}
$$

Phase Space

$$
R=1723 \Omega \quad L=27,44 \mathrm{mH}
$$

Transition to Double Scroll Attractor

$$
R=1721 \Omega \quad L=27,44 \mathrm{mH}
$$

Double Scroll

$$
R=1708 \Omega \quad L=27,44 \mathrm{mH}
$$

Double Scroll

$$
R=1673 \Omega \quad L=27,44 \mathrm{mH}
$$

Double Scroll

$R=1651 \Omega \quad L=27,44 \mathrm{mH}$

Double Scroll

$$
R=1593 \Omega \quad L=27,44 \mathrm{mH}
$$

Phase Space

$R=1500 \Omega \quad L=27,44 \mathrm{mH}$

Phase Space $R=1476 \Omega \quad L=27,44 \mathrm{mH}$

Phase Space

$$
R=1472 \Omega \quad L=27,44 \mathrm{mH}
$$

Phase Space $R=1469 \Omega \quad L=27,44 \mathrm{mH}$

Phase Space

$R=1464 \Omega \quad L=27,44 \mathrm{mH}$

Phase Space

$$
R=1437 \Omega \quad L=27,44 \mathrm{mH}
$$

Simulation

- Euler's method is insufficient
- Using Runge-Kutta 4 ${ }^{\text {th }}$ order O DE solver (in M atlab)
- U sing calculated I-V characteristic of Chua's diode
- Arbitrary initial conditions (which lead to attractor) We're interested in attractor

Theoretical result

Comparison
$R<1778 \Omega$

$R<1753 \Omega$

$R<1728 \Omega$

$R<1796 \Omega$

$R=1766 \Omega$

$R=1721 \Omega$

$R=1708 \Omega$

$1464 \Omega<R<1721 \Omega$
$1540 \Omega<R<1757 \Omega$

$$
R=1757 \Omega
$$

$$
R=1742 \Omega
$$

$$
5+i+2
$$

50

Varying Inductance

- Changes only width of range (for R,C) when chaos occurs
- Has no any other interesting effect

Varying Capacity

- Changes width of range (for R,L) when chaos occurs
- When using too small capacitance (e.g. 10 nF for our circuit) \rightarrow saturation of capacitor

Bifurcation Diagrams

- Looking at local minima in voltage over ${ }^{\text {st }}$ capacitor
- Changing resistance, capacitance, inductance
- Using simulation to numerically solve for voltage over $\mathrm{l}^{\text {st }}$ capacitor

Bifurcation Diagram - Changing R

Period Doubling Bifurcation

Bifurcation Diagram - Changing R

Start of the Chaos Region

Rössler attractor

Chaos

End of Chaos Region

Clomidulkstionfor your attention!

Deterministic Chaos

Found "chaotic" topology

Theory - Simulation

Nonlinearity is needed

Comparison

APPENDIX

Lyapunov exponents

- [Parlitz, Lyapunov exponents from the Chua's circuit, Journal of Circuits, Systems and Computers, Vol. 3, No. 2, 1993]
- Q uite hard to compute and get from exp. data
- Could be calculated from dimensionless diff. equations (Initial conditions - $[0,0,0]$)

$$
\lambda_{V_{1}}=0.34 \frac{1}{R C_{2}} \quad \lambda_{V_{2}}=0 \quad \lambda_{L_{L}}=-5.9 \frac{1}{R C_{2}}
$$

I-V Characteristics

$V_{\text {min }}=\frac{R_{6}}{R_{5}+R_{6}} V_{\text {set }}$

$$
V_{\max }=\frac{R_{3}}{R_{2}+R_{3}} V_{\text {set }}
$$

$|V|<V_{\min }: I_{(V)}=-V\left(\frac{1}{R_{6}}+\frac{1}{R_{3}}\right)$ $V_{\text {min }}$
$|V|>V_{\text {max }}: I_{(V)}=V\left(\frac{1}{R_{1}}+\frac{1}{R_{4}}\right)-\operatorname{sgn}(V) V_{\max }\left(\frac{1}{R_{3}}+\frac{1}{R_{1}}\right)-\operatorname{sgn}(V) V_{\min }\left(\frac{1}{R_{6}}+\frac{1}{R_{4}}\right)$

Requirements for Nonlinear Resistor

- Active resistor Let's look at I-V Characteristic:
- 2 or more Unstable equilibria positions (intersections with load line)

- Easily realizable (Using op-amps)

Piecewise for simplicity

- Physically realizable

> Eventually passive (With positive slope)

Possible candidates

Totally 8 different possible topologies

Short circuit in DC equilibrium

0 pen circuit in DC equilibrium

R could be reduced into nonlinear resistor

Capacitors could be joined together

Bifurcation Diagram L

Local minima in voltage over ${ }^{\text {st }}$ capacitor

Bifurcation Diagram L

Local extremes in voltage over ${ }^{\text {st }}$ capacitor

Bifurcation Diagram L

Local extremes in voltage over ${ }^{\text {st }}$ capacitor

Bifurcation Diagram C

Local minima in voltage over $1^{\text {st }}$ capacitor

Bifurcation Diagram C

70

Deterministic Chaos

[H asselblatt, Boris; Anatole Katok (2003). A First Course in Dynamics: With a Panorama of Recent Developments. Cambridge University Press]:

- No universally accepted mathematical definition of chaos
- Commonly used definition

Chaotic = have these properties:

1. Sensitivity to the initial conditions
2. "Dense periodic orbits"
(Every point of phase space could be arbitrarily closed approached by periodical orbit)
3. "Topological mixing" (Any given region or open set of its phase space will eventually overlap with any other given region.)
