SLOVAKI

Pot-in-Pot refridgerator

7

Natália Ružičková

Task

The 'pot-in-pot refrigerator' is a device that keeps food cool using the principle of evaporative cooling.

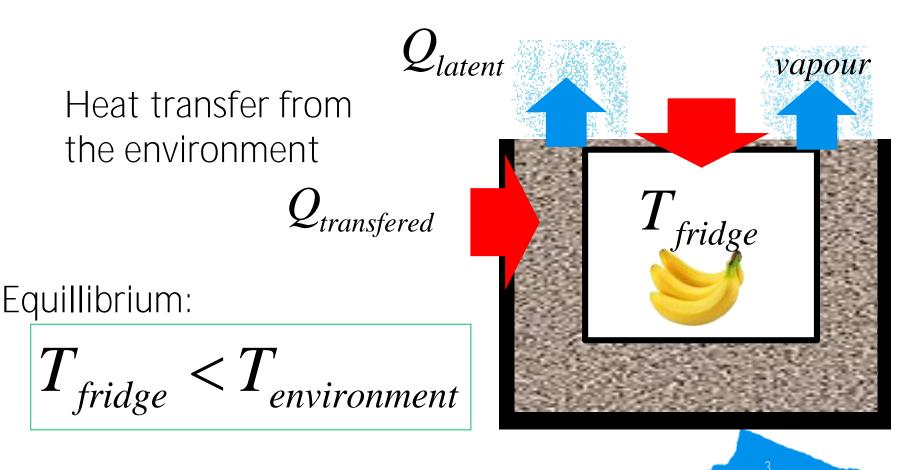
It consists of a pot placed inside a bigger pot with the space between them filled with a wet porous material, e.g. sand.

How might one achieve the best cooling effect?

→ Low temperature → Fast cooling

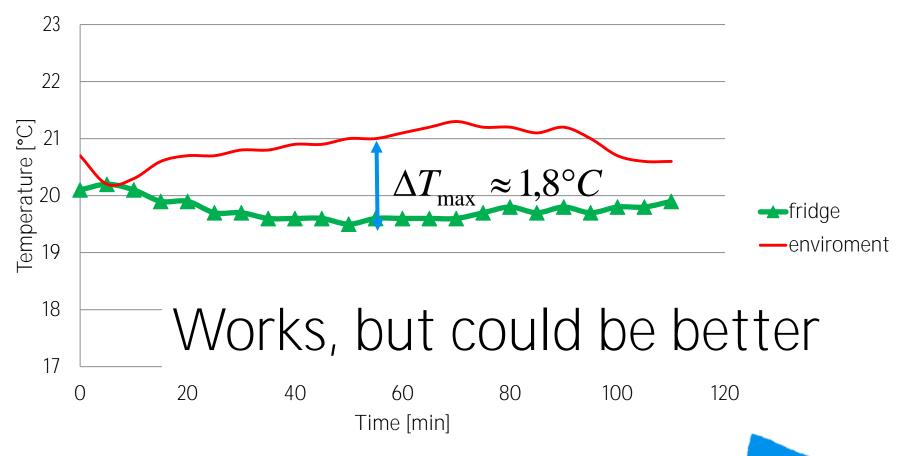
Mechanism

Wet porous material: Evaporation \rightarrow latent heat \rightarrow cooling



Preliminary Experiment

• Porous material: sand



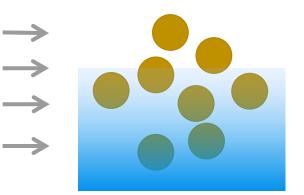
Evaporation requirements

Must be wet (capillarity)

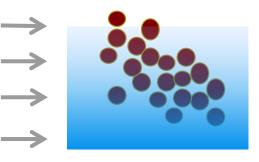
Exposed to air flow

Sand: a granular material

Big granules:
→ Better airflow ✓
→ Water drains down X



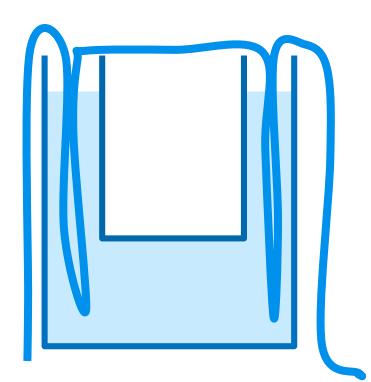
Small granules:
→ Can soak with water ✓
→ Little space for airflow ¥



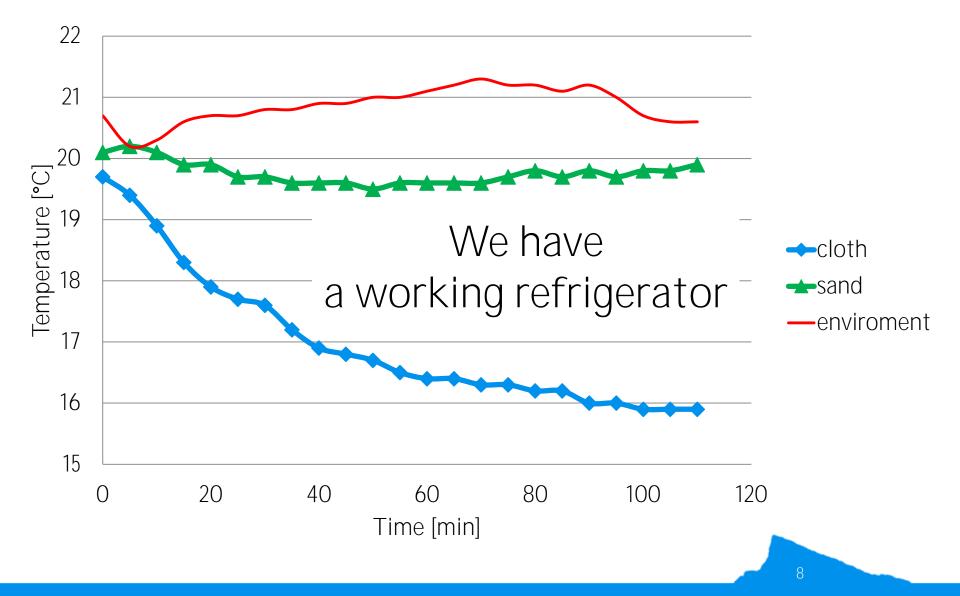
Other kind of porous material: Cloth

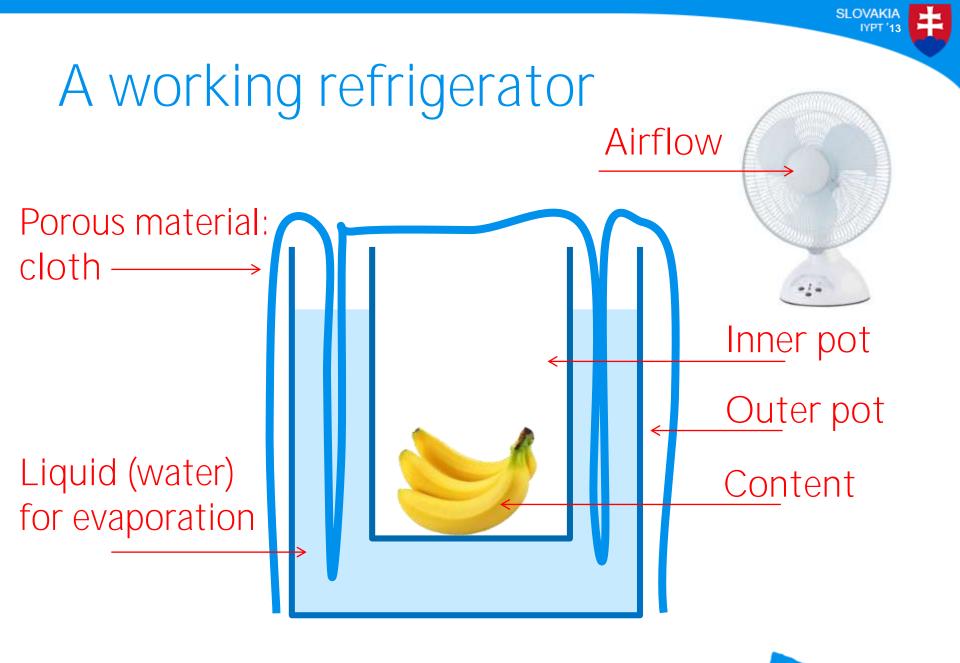
Gets soaked with water

 Can be exposed to air flow on sufficient area



Cloth vs. sand: the difference





Task

"How might one achieve the best cooling effect?"

→ Low temperature
→ Fast cooling

- Simple model of the cooling
- Experimentally verify & optimize
- Estimate the best possible cooling

Model of the cooling effect

- Evaporation rate: dm = ASvdt
 A: related to volatility of the liquid (in air)
- Heat transferred from the surroundings: $dQ = BSv\Delta Tdt$ *B*: related to thermal conductivity, capacity of air

- *S* Surface area
- v Air flow speed
- **Δ***T* Temperature difference

Model of the cooling

Calorimetry:

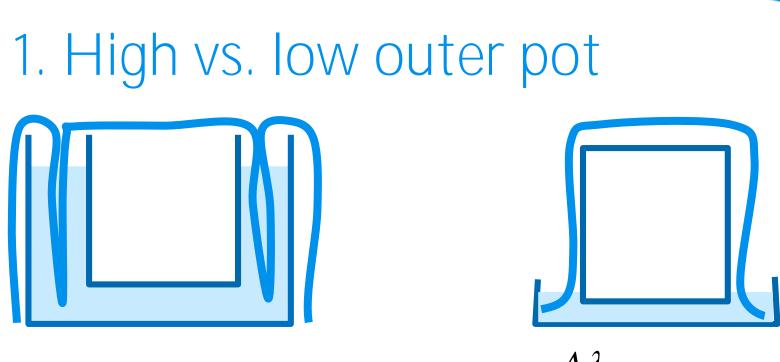
 $ASv\lambda dt - BSv\Delta Tdt = -CdT$

$$T = T_{air} - \frac{A\lambda}{B} \left(1 - e^{-\frac{BSv}{C}t} \right)$$

Final temperature drop: $\Delta T = \frac{A\lambda}{B}$ Speed of cooling: $\frac{BSv}{C}$

 $\lambda = latent heat$

C = thermal capacity of fridge

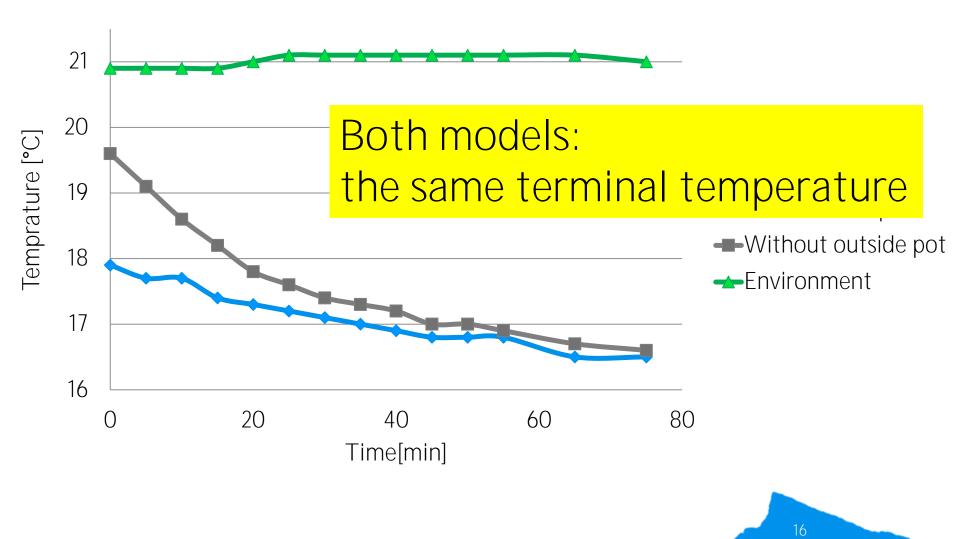


• Terminal temperature: $\Delta T = \frac{A\lambda}{B}$ depends on materials only \rightarrow Equal

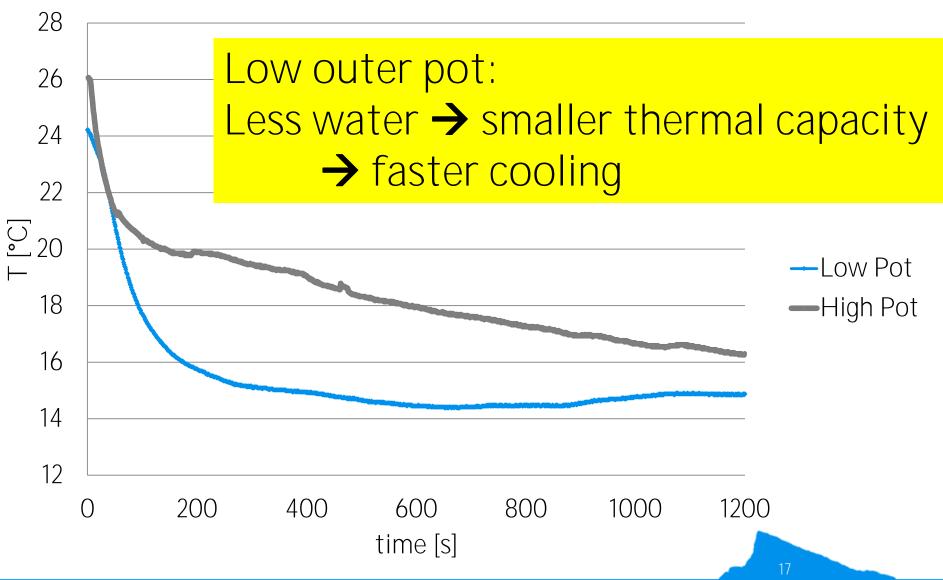
BSv

• Cooling rate: $\frac{1}{C}$ more water \rightarrow bigger $C \rightarrow$ slower cooling

High vs. low pot: final temperature



High vs. low pot: rate of cooling

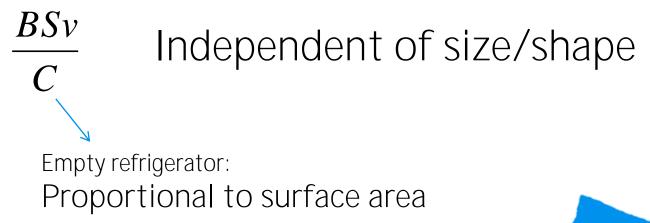


2. Size and shape of the fridge

Terminal temperature:

$$\Delta T = \frac{A\lambda}{B}$$
 Independent of size/shape

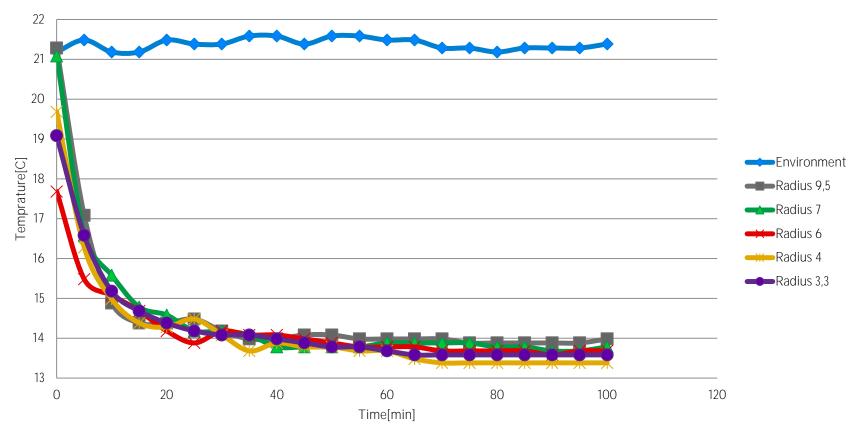
Speed of cooling:



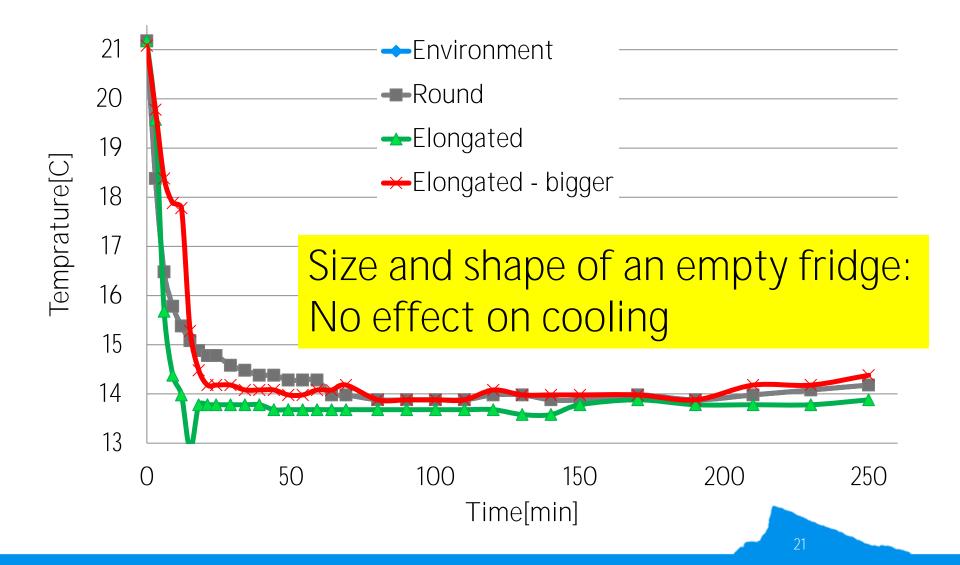
Effect of different sizes

Effect of different size

Different sizes



Effect of different shapes



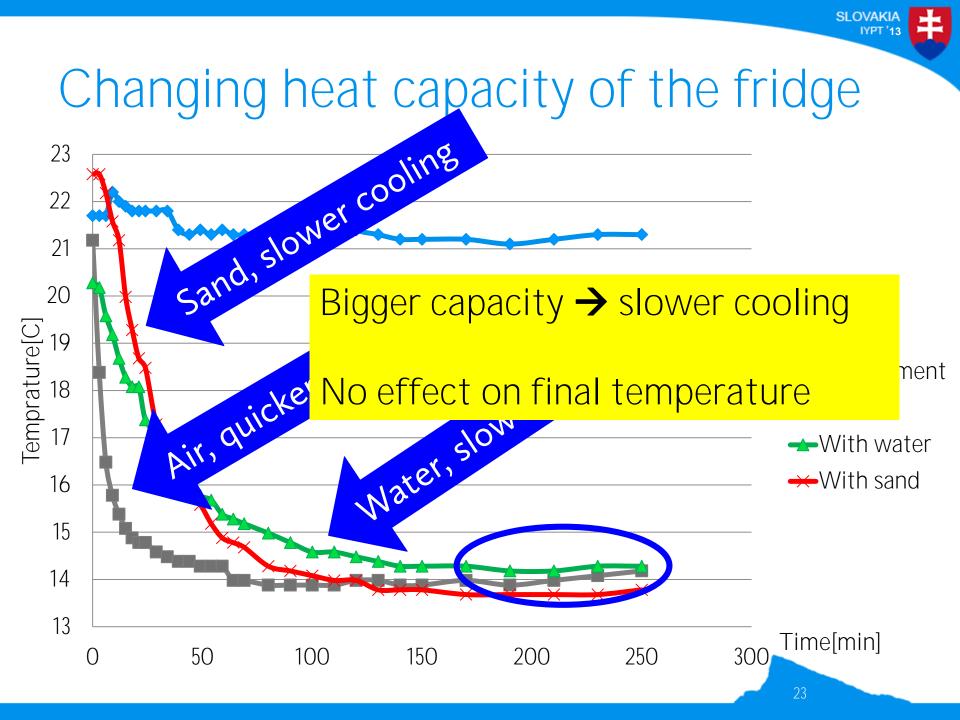
3. What's inside

Terminal temperature:

$\Delta T = \frac{A\lambda}{B}$ Independent of content

Speed of cooling:

$\frac{BSv}{C} \qquad \text{High capacity} \rightarrow \text{slower cooling}$



4. Different liquid

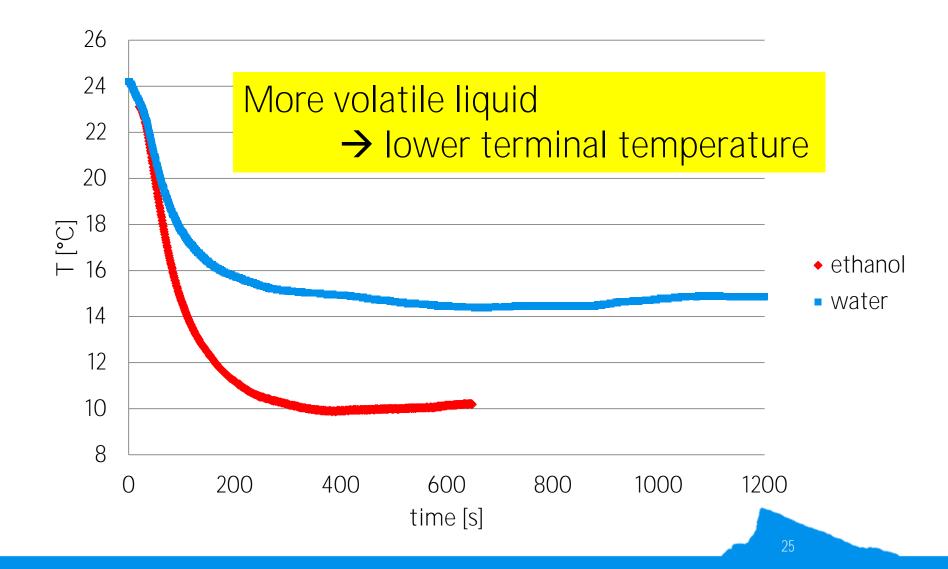
Terminal temperature:

$\Delta T = \frac{A\lambda}{B}$ Grows with volatility & latent heat

Speed of cooling:

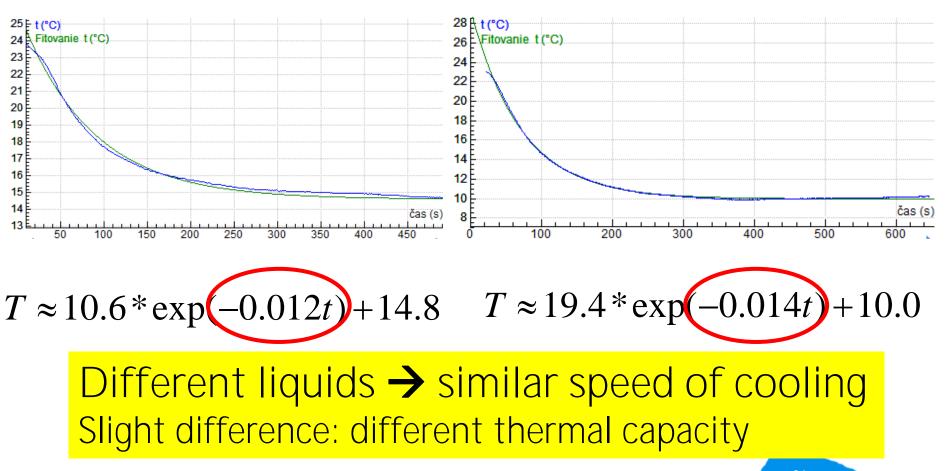
<u>BSv</u> Independent of liquid(only a small capacity difference)

Water VS. Etanol:



Water vs. ethanol: exponential fit

Water



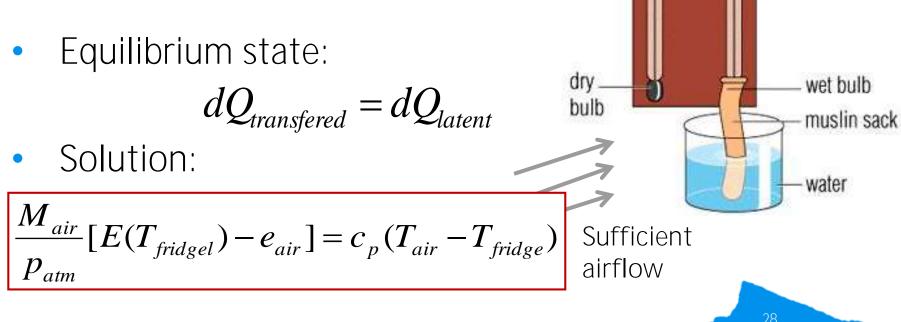
Minimal temperature estimation Analogical phenomenon: Assman psychrometer

SLOVAKI

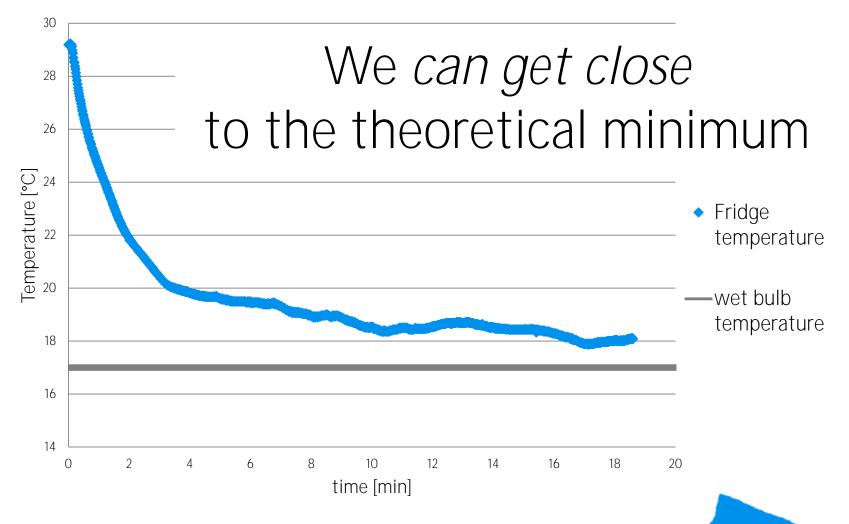
temperature

depression

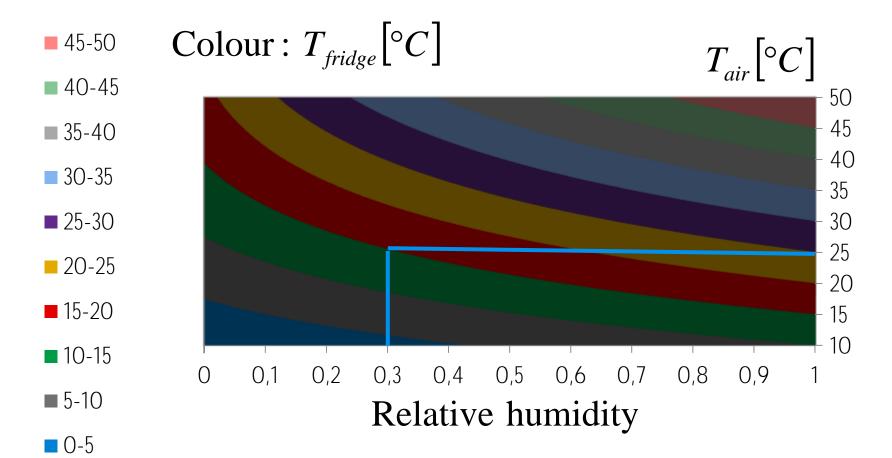
- Wet and dry thermometer
- Wet is cooler due to evaporation

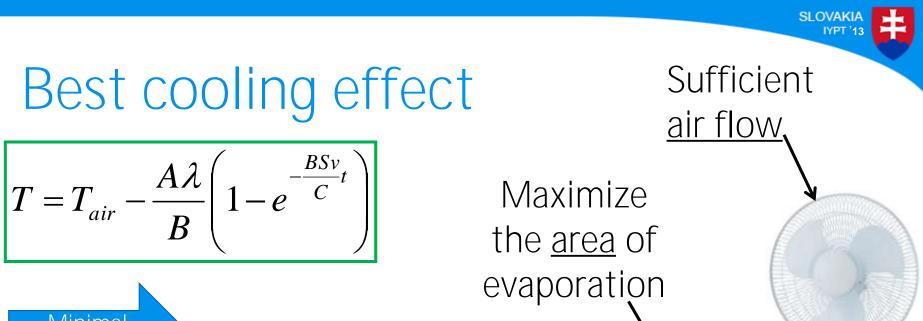


Wet bulb vs. refrigerator



Minimal achievable temperature





<u>volatile liquid</u> with low concentration in air (eg. Ethanol)

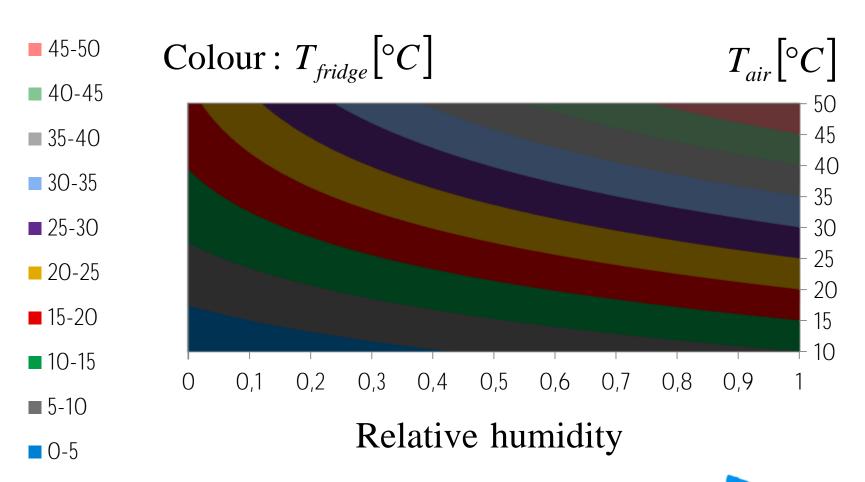
Minimal

temperature

speed

Minimise <u>thermal</u> _____ <u>capacity</u> of the fridge (eg. Low outer pot)

Thank you for your attention



SLOVAKIA IYPT '13

APPENDICES

Assman psychrometer theory

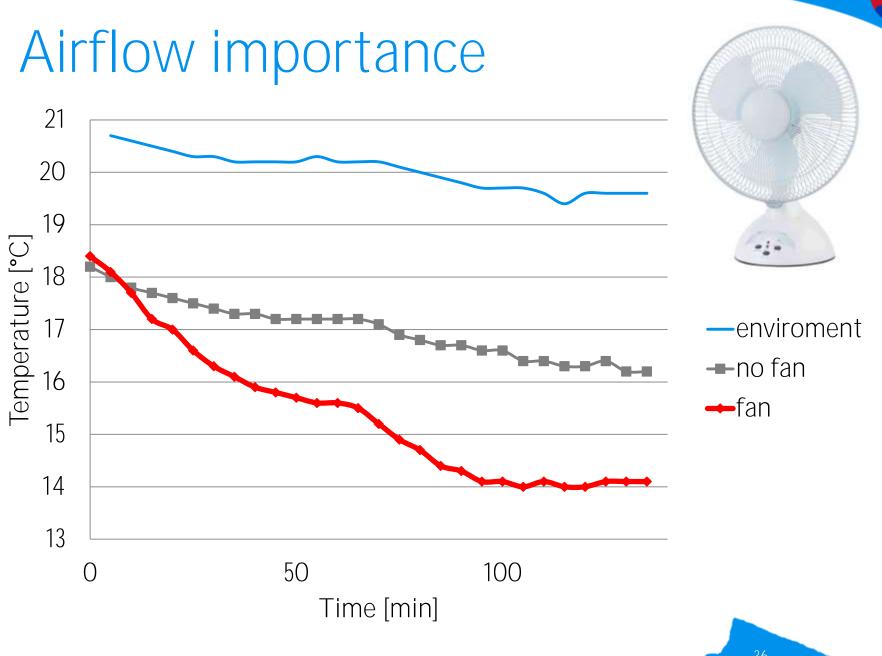
Assumptions:

- Air cools to T_{fridge}; vapor pressure saturates (thanks to fast airflow)
- Equilibrium of heat flow: $dQ_{transferred} = dQ_{latent}$

$$\frac{M_{air}}{p_{atm}} [E(T_{fridgel}) - e_{air}] = c_p (T_{air} - T_{fridge})$$

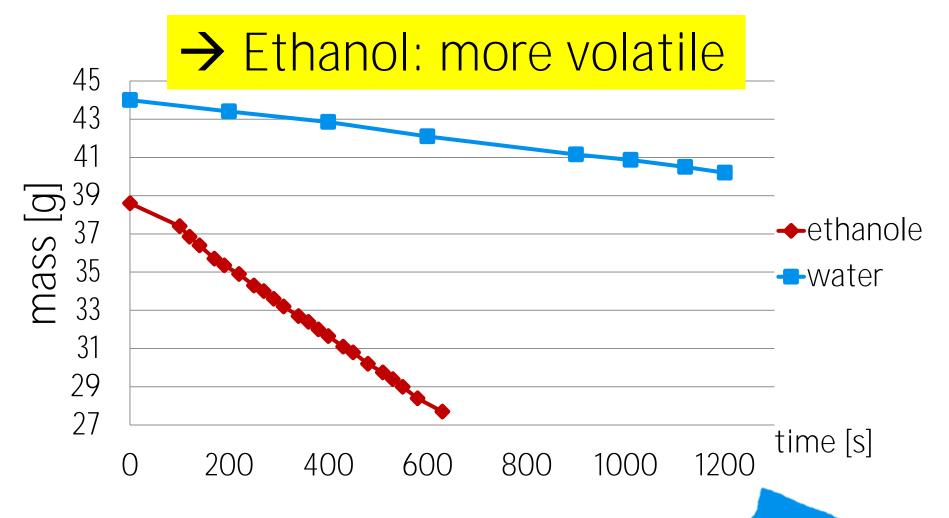
• Numerically solve for T_{fridge} (complicated function E(T)) Wet bulb

34



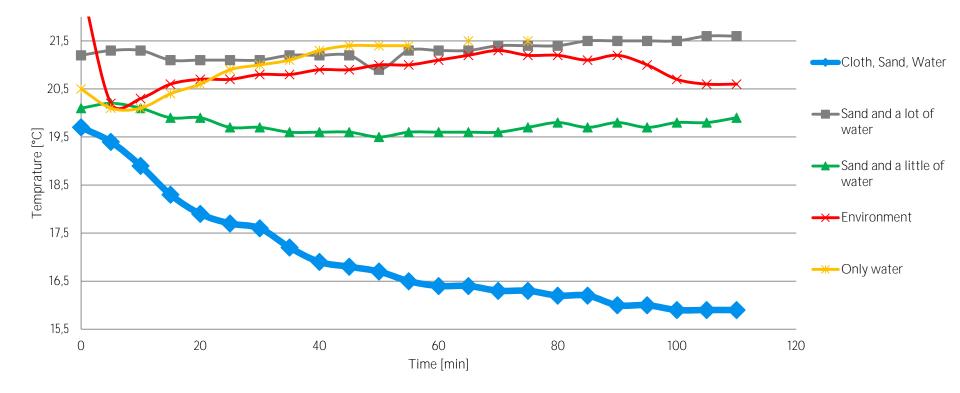
36

Water vs. ethanol: Rate of evaporation

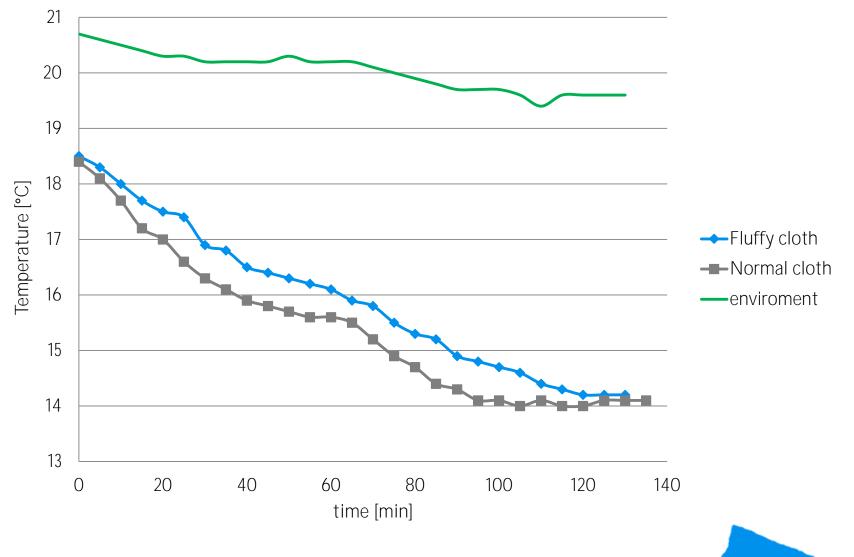


Do we need cloth or not?

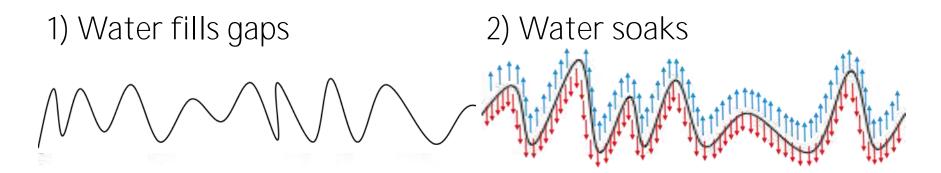
Cloth



What is the best material for cloth?



Why the type of cloth does NOT matter?



• Water fills gaps.

• The surface of water = the area of evaporation

ightarrow The same as normal cloth

Area of evaporation

area through which heat gets in

 Equilibrium temperature doesn't change

SLOVAKIA

Effect of different sizes

Effect of different shapes

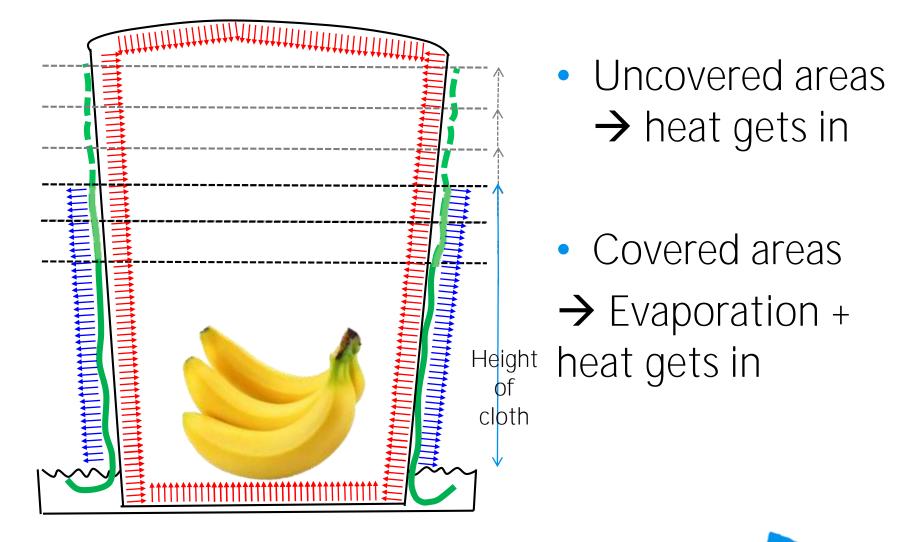
Our refrigerator

$$T = T_{air} - \frac{A\lambda}{B} \left(1 - e^{-\frac{BSv}{C}t} \right)$$

SLOVAKIA IYPT'13

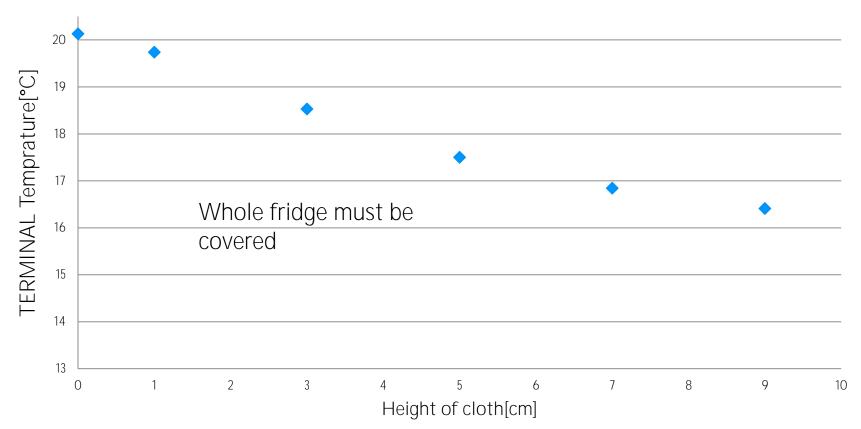
43

Covered VS uncovered areas

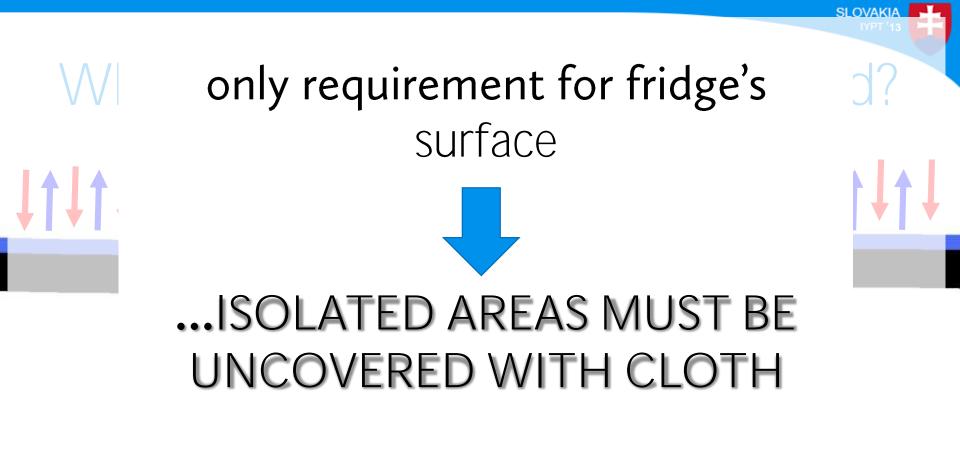


Does area of cloth matter?

The height of cloth



45



So that area of evaporation

area trough heat gets in

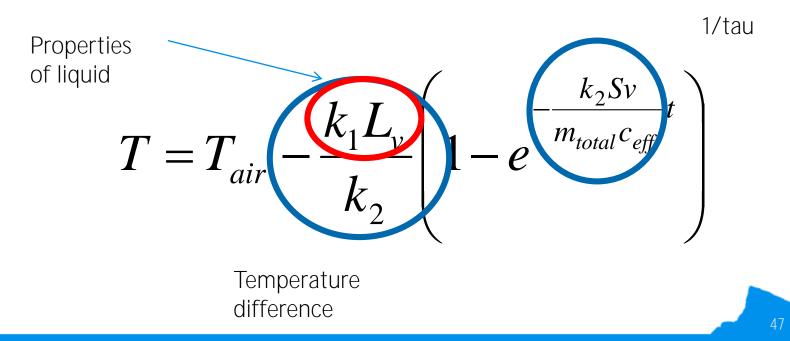
Speed of cooling

$$dm_{water} = k_1 S v dt$$

k1= ability of liquid to evaporate [kg/m3] k2= part of air which cools down [J/Km3]

$$C = m_{w}c_{w} + m_{pot}c_{pot} + \ldots = m_{total}c_{eff}$$

$$k_1 Sv L_V dt - k_2 Sv (T_{air} - T_{fridge}) dt = -CdT$$



Assman psychrometer: theory

Equillibrium of heat flow:

$$dQ_{transfered} = dQ_{latent}$$

$$dQ_{transfered} = dm_{air}c_{air}\left(T_{air} - T_{fridge}\right)$$

SLOVAKI

$$dQ_{latent} = dm_{water}L_v$$

Air cools to Tfridge; vapor pressure saturates:

to Tridge; vapor pressure saturates:

$$dQ_{latent} = \frac{nM\lambda}{p} \left(E(T_{fridge}) - e \right)$$

$$dQ_{transfered} = nc_p \left(T_{air} - T_{fridge} \right)$$

$$\frac{M_{air}}{p_{atm}} \left[E(T_{fridgel}) - e_{air} \right] = c_p \left(T_{air} - T_{fridge} \right)$$

Assman psychrometer: theory

Surrounding air:

$$dQ_{transfered} = dm_{air}c_{air}(T_{air} - T_{fridge})$$

Transfers heat to the cloth:

$$dQ_{latent} = dm_{water}L_v$$

 Absorbs water vapor (heat used for evaporation)

Equilibrium (terminal temperature):

$$dQ_{transfered} = dQ_{latent}$$

Minimal T: theoretical estimation

Terminal temperature:

$$dQ_{latent} = dQ_{transfered}$$

$$dmL_T = dm_{air}c_{air}(T_{air} - T_{fridge})$$

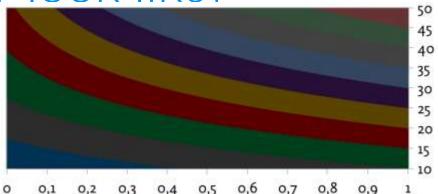
$$\frac{M_{air}}{p_{atm}}[E(T_{fridgel}) - e_{air}] = c_p(T_{air} - T_{fridge})$$

Numerically solved for T_{fridge} (complicated function E(T)) SLOVAK

Conclusion – What should the most effective refrigerator look like?

$$T = T_{air} - \frac{A\lambda}{B} \left(1 - e^{-\frac{BSv}{C}t} \right)$$

• Minimal temperature:



- sufficient air flow, maximize evaporation area
- volatile liquid with low concentration in air (eg. Ethanol)
- Fastest cooling:
 - Fast air flow
 - Minimise thermal capacity of the fridge (eg. Low outer pot)
- Prediction of minimal temperature