

Hovercraft

Nikolay Sibiryakov

A simple <u>model hovercraft</u> can be built using a CD and a balloon filled with air attached via a tube. Exiting air can lift the device making it <u>float over a surface with low friction</u>. Investigate how the relevant parameters influence <u>the time</u> <u>of the 'low-friction' state</u>.

First observations

3

Floating over the table

Force balance

The reactive force

d = 13,8 mm $S = 1,5 \text{ cm}^2$ $F_R = 0,15 \text{ N}$

$$mg = 0,28 \text{ N}$$

Viscous friction

7

Force balance over the table

8

Floating under the ceiling

Bernoulli's principle

 $p < p_{atm}$

Force balance under the celling

Final force balance

Outline of the report

...how the relevant parameters influence the time of the 'low-friction' state...

Air pressure under the disk

Parameters of the hovercraft

Plug-in nozzles

Setup for pressure measurement

Pressure distribution under the disk

Hovering experiments

"...how the relevant parameters influence the time of the 'low-friction' state..."

Time vs. nozzle cross-section

Narrow nozzles Viscosity dominates

21

What do we already know?

Small nozzle diameter

Viscous regime: Hele-Shaw cell

Continuity condition:
$$v(r) = \frac{Q}{2\pi r\delta}$$

Darcy's law: $v(r) = -\frac{\delta^2}{12\eta} \frac{dp}{dr}$

$$p(r) = \frac{6\eta Q}{\pi \delta^3} \cdot \ln \frac{R}{r}$$

Narrow nozzle (d = 1.9 mm)

Hovering time with narrow nozzle

Velocity in the nozzle:

$$u^{2} = \frac{p}{\rho} \cdot \left\{ 1 - \frac{mg}{p \cdot \pi R^{2}} \cdot 2 \ln \left(\frac{R}{a} \right) \right\}$$

Hovering time with narrow nozzle

Measurement of relative pressure

Pressure vs. volume

Hovering time with narrow nozzle

$$\tau = \tau_0 \cdot \left(1 - \frac{mg}{p \cdot \pi R^2} \cdot 2 \ln \frac{R}{a} \right)^{-1/2}$$

For our parameters of the balloon and the disk

$$\tau \approx \tau_0 \left(1 + 0,02 \cdot \ln \frac{R}{a} \right)$$

If R/a = 60, $\tau = 1,08 \cdot \tau_0$

29

Wide nozzles Viscosity + Bernoulli

What do we already know?

Big nozzle diameters

Outflow differs from the free outflow

Pressure under the central area is less than atmospheric

Wide gap: Bernoulli's regime

Continuity condition:
$$v(r) = \frac{Q}{2\pi r\delta}$$

Bernoulli's principle: $p + \frac{\rho v^2}{2} = \text{const}$
Relative Pressure is negative
$$p(r) = \frac{1}{4\pi^2} \cdot \frac{\rho Q^2}{\delta^2} \left(\frac{1}{R^2} - \frac{1}{r^2}\right)$$

Combined regime

Parabolic velocity profile

Armengoll J., Calbó J., Pujol T., Roura P. (2011) "Bernoulli correction to viscous losses: Radial flow between two parallel discs".

Force balance

$$mg - F_R \approx \frac{3\eta Q R^2}{\delta^3} - \frac{27\rho Q^2}{70\pi\delta^2} \ln\left(\frac{R}{a}\right)$$

Viscous Bernoulli

Both terms are large compared with the weight, so they are approximately equal to each other

$$Q \cdot \delta \approx \frac{70}{9} \cdot \frac{\eta \cdot \pi R^2}{\rho \ln (R/a)}$$

Outflow from the nozzle under the disk

As outflow from the nozzle into the atmosphere

$$Q = 2\pi a \delta \cdot v_0 \qquad v_0 = \sqrt{\frac{p}{\rho}}$$

Cylindrical entry

Hovering time with wide nozzle

$$Q \cdot \delta \approx \frac{70}{9} \cdot \frac{\eta \cdot \pi R^2}{\rho \ln (R/a)} \qquad Q = 2\pi a \delta \cdot v_0$$

$$\tau = V \cdot \sqrt{\frac{9}{70} \cdot \frac{\rho \ln (R/a)}{2\pi a \cdot \pi R^2} \cdot \eta v_0}$$

Theory-experiment comparison

Hovering time vs. weight

The hovering time

$$\tau = \frac{\tau_0}{\sqrt{1 - \frac{mg}{p \cdot \pi R^2} \cdot 2\ln\frac{R}{a}}}$$

$$\tau = V \cdot \sqrt{\frac{9}{70} \cdot \frac{\rho \ln (R / a)}{2\pi a \cdot \pi R^2 \cdot \eta v_0}}$$

<u>The hovering time almost does not depend on</u> <u>the weight of the vessel</u> until this weight is not very large.

Experiment

Time vs. weight (nozzle 13.8 mm)

Summary

43

Conclusions

References

- Jackson J.D., Symmons G.R. (1965) "An investigation of a laminar flow between two parallel disks". *Appl. Sci. Res.* 15, 59–75.
- Armengoll J., Calbó J., Pujol T., Roura P. (2011) "Bernoulli correction to viscous losses: Radial flow between two parallel discs". *Am. J. Phys.* 76, 730– 737.
- Izarra Ch., Izarra G. (2014) "Stokes equation in a toy CD hovercraft". *Eur. J. Phys.* 32, 89–99.

Thank you for your attention!