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The problem

Make a light pendulum with a small magnet at 
the free end. An adjacent electromagnet 
connected to an AC power source of a much 
higher frequency than the natural frequency of 
the pendulum can lead to undamped 
oscillations with various amplitudes. Study and 
explain the phenomenon.
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First observationsFirst observations
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Frequency ≈ 1 
Hz 

Experimental setup

Neodymium
magnet

Light wooden 
plank

Rotation sensor

Electromagnet
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Undamped oscillations 5



Plan of the report

Magnets interactions

Conditions for undamped oscillations

Experimental detection of undamped oscillations

Orders of resonance

Cycles of undamped oscillations
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Main goal of our investigation

Computer simulation

Theoretical model

Poincare map

Prediction of
undamped oscillations
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QualitativeQualitative
explanationexplanation
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Region of magnets’ interaction

A magnet on the pendulum interacts with
the electromagnet only flying over it.

The span happens with almost constant velocity.
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Limitations of amplitudes
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Characteristic times and frequencies
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DC solenoid

If the current in solenoid is direct, the change in 
energy of the pendulum is equal to zero.

is accelerated is braked
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AC solenoid

The energy of the pendulum can either increase…

is accelerated is accelerated
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AC solenoid

…and decrease.

is braked is braked

Energy transfer depends
on the phase of the current
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Dependence on the phase

Current oscillations in the coil:

0( ) sin( )I t I t  

   0 0( ) cos sin sin cosI t I t I t       
No energy transferEnergy transfer

We denote the time when the pendulum passes its 
lowest point as t = 0.
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Impact of the electromagnet

Angle

Angular velocity
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Undamped oscillations (1 period)

Angle

Angular velocity
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Undamped oscillations (2 periods)

Angle

Angular velocity
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ExperimentsExperiments
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Order of resonance

In this test 30 current oscillations occur during
1 pendulum oscillation. Order of resonance = 30.
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Orders of resonance
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Why all orders are even?

Attraction of magnets

Repulsion of magnets

2 2N k  

Half of a cycle
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Cycles ofCycles of
undampedundamped
oscillationsoscillations
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Experiment #2

• AC frequency is fixed (25 Hz in the main 
series).

• Some undamped oscillation of kicked 
pendulum is found (resonance order = 30, 
amplitude ≈ 80° in the main series).

• Slowly shifting the voltage we monitor 
changes of the fine structure of the phase 
portrait.
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Period doubling

Appearance of the cycle = 1.7 V

Period doubling = 6.9 V

Destruction of the cycle= 9.5 V
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3-periodic cycle

This 3-periodic cycle exists
in the range from 4.5 V to 6.0 V
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The fine structure of the resonance

2 V
6.9 V

9.5 V

4.5 V

6 V
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Why the cycles are destroyed?

• At low currents: kicks are too weak to compensate 
the energy dissipation.

• At high currents: phase adjustment can’t exactly 
compensate too strong too strong kicks. This 
eventually leads to destruction of the cycle.
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ComputerComputer
simulationsimulation
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Limitations of natural experiment

• There are limitations on the voltage and 
current in power supply.

• Fine effects are difficult to observe because of 
vibrations and external disturbances.
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Model of magnets interaction
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Computer simulation 34



Limitations of the computer model

• We do not know which initial start conditions
lead to the establishment of undamped 
oscillations.

• In each test, we need to wait 10 minutes to 
establish the stationary regime.

 To conduct all the necessary measurements it will 
take us more then decade of continuous work!
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Poincare map
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Theoretical model

Poincare map

The pendulum interacts with an 
electromagnet in the narrow angle range.
This allows to relate values (v, φ) on two 

consecutive spans.
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Change in velocity for half-period

1 (1 )n nv v    
The electromagnet is switched off:

The electromagnet is switched on:

0
1 2

2

2 sin
(1 ) cosn n

n n n

n

d d
v vFv v

m d
v



        
          

          

38



Oscillations with large amplitude
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Change in phase for half-period
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2 2U glOur calculation takes into account
first six expansion terms.

Dependence of the oscillation period on the velocity.

40



Final formulas
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Poincare map
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F/m = 13 N/kg
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Increasing the strength (video) 45
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SummarySummary
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