

Russia IYPT

Two balloons

Nikolay Sibiryakov

Two rubber balloons are partially inflated with air and connected together by a hose with valve. It's found that depending on initial balloon volumes, the air can flow in different directions. Investigate this phenomenon.

From a bigger to a smaller

From a smaller to a bigger

Outline of the report

Properties of a rubber balloon

Theoretical model

Experiment

Effect of hysteresis

Properties of a rubber balloon

Relative pressure measurement

Relative pressure vs. volume

Breakout force and surface tension

Breakout force

$$
\begin{gathered}
F=p \cdot \pi r^{2} \\
\text { Surface tension } \\
T=\frac{F}{2 \pi r}=\frac{p r}{2}
\end{gathered}
$$

Force vs. volume

Surface tension vs. volume

Constant surface tension

Molecular structure of rubber

Isoprene polymer $\left(\mathrm{C}_{5} \mathrm{H}_{8}\right)_{n}$
with long molecular chains

- Each block $\mathrm{C}_{5} \mathrm{H}_{8}$ rotates freely with respect to its neighbors. Therefore long molecular chains look like shown at this picture.
- The distance between the ends of a chain is much shorter than the length of this chain when it is straightened.

Surface tension vs. volume

Connected balloons

Flow direction

Stable and unstable branches

Experimental setup

\#1: Unstable equilibrium

Relative pressure graph

\#2: Two big balloons

How it happens

Relative pressure graph

Theoretical model

Total mass/volume is constant

Phase diagram (analog)

Additional marking

Equilibrium of non-equal volumes

Phase diagram

Effect of rubber hysteresis

Pressure vs. volume

Pressure vs. volume

\#3: Incomplete volume equalization

How it happens

Relative pressure graph

\#4: Big is inflated, middle is deflated

How it happens

Relative pressure graph

Is the phase diagram valid?

Volume

Doubling of the phase plane

Summary

Conclusions

Relative pressure vs. volume 8

References

- Dreyer W., Müller I., Strehlow P. (1981) "A study of equilibria of interconnected balloons". Q. J. Mech. Appl. Math. 35, 419-440.

Russia IYPT

Thank you for your attention!

