

Two balloons

Nikolay Sibiryakov

Two rubber balloons are partially inflated with air and connected together by a hose with valve. It's found that <u>depending on initial</u> <u>balloon volumes, the air can flow in different</u> <u>directions</u>. Investigate this phenomenon.

From a bigger to a smaller

From a smaller to a bigger

Properties of a rubber balloon

6

Relative pressure measurement

Relative pressure vs. volume

Breakout force and surface tension

Breakout force

$$F = p \cdot \pi r^2$$

Surface tension $T = \frac{F}{2\pi r} = \frac{pr}{2}$

Force vs. volume

Surface tension vs. volume

Constant surface tension

Volume

Connected soap bubbles

Molecular structure of rubber

Isoprene polymer $(C_5H_8)_n$ with long molecular chains

Shape of a polymer chain

- Each block C₅H₈ rotates freely with respect to its neighbors. Therefore long molecular chains look like shown at this picture.
- The distance between the ends of a chain is <u>much shorter</u> than the length of this chain when it is straightened.

Surface tension vs. volume

Connected balloons

17

Flow direction

Stable and unstable branches

Experimental setup

#1: Unstable equilibrium

Volume

How it happens

Relative pressure graph

#2: Two big balloons

How it happens

Relative pressure graph

Theoretical model

27

Total mass/volume is constant

$$V_1$$
 V_2 m_1 m_2

$$m_1 + m_2 = \text{const}$$

$$pV = \frac{m}{\mu}RT \implies V = \frac{m}{\mu} \cdot \frac{RT}{P}$$

 $\frac{\Delta p}{p} \le 0.02 \quad \frac{\Delta T}{T} \le 0.01$

$$V_1 + V_2 = \text{const}$$

Phase diagram (analog)

Additional marking

Equilibrium of non-equal volumes

Phase diagram

#3: Strange behavior...

Effect of rubber hysteresis

34

Pressure vs. volume

Pressure vs. volume

#3: Incomplete volume equalization

37

How it happens

Relative pressure graph

#4: Big is inflated, middle is deflated

Volume

40

How it happens

Relative pressure graph

Is the phase diagram valid?

43

Doubling of the phase plane

Summary

Conclusions

46

 Dreyer W., Müller I., Strehlow P. (1981) "A study of equilibria of interconnected balloons". *Q. J. Mech. Appl. Math.* 35, 419–440.

Thank you for your attention!