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12. Thick Lens:

“A bottle filled with a liquid can 
work as a lens. Arguably, such a 
bottle is dangerous if left on a 

table on a sunny day. 

Can one use such a ‘lens’ to scorch 
a surface?“

2
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Bottle as a thick lens
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How it works

incoming light
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Concentrated light

= power
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How it works

incoming light

𝐼0
Concentrated light

= power

Material heats up

Ignition

4

Section 1 Section 2

Light passing through the bottle Energy of light
Reflection, absorption, dissipationIntensity of incident light
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Different shapes of bottles

SphereTop view:
CylinderUndefined

shape
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Intensification of light - experiment
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Intensification of light - experiment

Ratio of light intensities
in these points

= intensification
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Patterns and intensifications observed
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Patterns and intensifications observed
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Patterns and intensifications observed

25×5×5×

1500×undefined
focus

focus
is a line

focus
is a line

focus
is a point

Spherical bottle is the most dangerous

7
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Section 1:
Theoretical estimate of intensification

Two theoretical models

Geometrical model Numerical ray tracing

8

𝑅1

𝑅2

𝑓



15

Section 1:
Theoretical estimate of intensification

Two theoretical models

Geometrical model Numerical ray tracing

8

𝑅1

𝑅2

𝑓



15

GEOMETRICAL MODEL
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Focus of a sphere
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𝑖𝑚𝑎𝑔𝑒 𝑎𝑟𝑒𝑎 = 𝑆𝑜𝑙𝑎𝑟 𝑎𝑟𝑒𝑎 × 𝑚𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛²

𝑚𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =
𝑓

𝑓 − 𝑑𝑠𝑜𝑙

Maximum achievable intensity?

𝑑𝑠𝑜𝑙

𝑓
𝑆𝑠𝑜𝑙 ×𝑀2

𝑆𝑠𝑜𝑙

𝑆𝑙𝑒𝑛𝑠𝐼0

11
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Spherical aberration

11



15

ABERRATION EXPERIMENT
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ABERRATION EXPERIMENT

12

Displacement of the ray
(x-axis)
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ABERRATION EXPERIMENT

12

Displacement of the ray
(x-axis)

Horizontal offset of concentrated light
from the focus

(y-axis)
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Effective area – ABERRATION EXPERIMENT
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Theoretical prediction of maximal 
intensity

𝐼 = 𝑘 𝐼0

𝜋𝑅2
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Comparison with the experiment

1500×

𝐼 = 𝑘
14000𝜋

16
𝐼0 ≅ 2750𝑘 𝐼0

Permeability constant includes
• Reflection on plastics-air interface
• Reflection on plastics-liquid interface (2x)
• Scattering in the liquid
• Absorption in the liquid (depends

on the frequency of the light)

+ other undeterminable losses

15

𝑘 ≅ 0.55
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NUMERICAL RAY TRACING

Advantages:

accuracy – spherical aberration, reflection, dispersion were assumed

results – full image of intensity profile curve
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(width)

𝜃01

𝑤

𝑛1

𝑛2

𝑛3

𝜃04ℎ

𝑑02𝑑01

ℎ01

18

Reflection + refraction at the interfaces
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(width)

𝜃01

𝑛1

𝑛2

𝑛3

𝜃04ℎ

𝑑02𝑑01

ℎ01 Assumed negligible

𝑤 → 0

18

Reflections are conserved

Reflection + refraction at the interfaces
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Ray tracing – ins and outs

𝜃1
𝜃2

ℎ 𝑟

ℎ12

ℎ3

𝜃3 𝜃4
𝜃1

𝜃5𝛾2 𝛾3 𝛾4

𝜃6

𝑛1 𝑛2

𝑑1

𝑛3

𝜆

Input parameters

Output parameters

19
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• Aberration and coma
included by geometry

• Reflection – Fresnel equations

Method: included effects

𝑓

ℎ3 ℎ𝑖

𝜃6

*unpolarized light assumed

𝑅 =

𝑛1𝑐𝑜𝑠𝜃𝑖 − 𝑛2 𝑐𝑜𝑠𝜃𝑡
𝑛1𝑐𝑜𝑠𝜃𝑖 + 𝑛2 𝑐𝑜𝑠𝜃𝑡

2

+
𝑛1𝑐𝑜𝑠𝜃𝑡 − 𝑛2 𝑐𝑜𝑠𝜃𝑖
𝑛1𝑐𝑜𝑠𝜃𝑡 + 𝑛2 𝑐𝑜𝑠𝜃𝑖

2

2

𝑛1

𝑛2
𝑛3 𝑛2

𝑛1

20



15

• Aberration and coma
included by geometry

• Reflection – Fresnel equations

Method: included effects

𝑓

ℎ3 ℎ𝑖

𝜃6

*unpolarized light assumed

𝑅 =

𝑛1𝑐𝑜𝑠𝜃𝑖 − 𝑛2 𝑐𝑜𝑠𝜃𝑡
𝑛1𝑐𝑜𝑠𝜃𝑖 + 𝑛2 𝑐𝑜𝑠𝜃𝑡

2

+
𝑛1𝑐𝑜𝑠𝜃𝑡 − 𝑛2 𝑐𝑜𝑠𝜃𝑖
𝑛1𝑐𝑜𝑠𝜃𝑡 + 𝑛2 𝑐𝑜𝑠𝜃𝑖

2

2

𝑛1

𝑛2
𝑛3 𝑛2

𝑛1

20



15

• Dispersion – Cauchy’s equation

Method: included effects

𝑛 𝜆 = 1.13199 +
6878

𝜆2
+

1.132 𝑥 109

𝜆4
+

1.11 𝑥 1014

𝜆6
… [1]

[1] Water Refractive Index in Dependence on Temperature and Wavelength, by Alexey N. Bashkatov, Elina A. Genina, Optics Department 
Saratov State University, Saratov, Russia 

*for water:

• Sun’s spectrum
- black body radiation

𝐼(𝑣,𝑇) =
2ℎ𝑣3

𝑐2
1

𝑒
ℎ𝑣
𝑘𝑇 − 1

𝑊

𝑚2 𝑠𝑟 𝐻𝑧

21
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Ray tracing – processed output
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Ray tracing – processed output
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Perform more accurate measurement

Aperture: f/2.8
ISO: 400
Shutter speed: 1/30 sec

Aperture: f/22
ISO: 100
Shutter speed: 1/400 sec

1280×Maximum intensification:
23
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Ray tracing vs. accurate measurement

24
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Ray tracing vs. accurate measurement

99% correlation!

24
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SECTION 2: DISSIPATION FROM MATERIAL
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Heating equation

26
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𝐼𝑖𝑛 = 320
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𝑚2

𝑆 = 10−6𝑚2
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𝑇 𝑆
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𝑚𝑘
𝕕𝑇

𝕕𝑡
= 𝜖 𝐼𝑖𝑛𝑺 − 𝑐

𝑺

𝒍
+ ℎ𝑺 Δ𝑇 − 𝜎𝜖𝑺𝑇4



15

Heating equation
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Heating equation
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Heating equation
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Heating equation

26
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Heating equation
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Heating equation

26

Change in internal energy

Net power input
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Power dissipated
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Heat dissipated to surroundings by…
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Dark paper ~2 seconds



15

Basic condition for ignition

𝑃𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 ≥ 𝑃𝑙𝑜𝑠𝑠𝑒𝑠(𝑇𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛)
To heat the material further, this condition must be satisfied:

28
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What is sufficient?
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Critical intensities (the measurement)

30

• We change distance between 
the lens and the target

• What is the range of distances
in which the material scorch?

• Conditions of the experiment
– Sunlight intensity 380𝑊/𝑚²

– Typical shifts: 1 − 5 𝑐𝑚
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Critical intensities (the measurement)

30

• We change distance between 
the lens and the target

• What is the range of distances
in which the material scorch?

• Conditions of the experiment
– Sunlight intensity 380𝑊/𝑚²

– Typical shifts: 1 − 5 𝑐𝑚

Critical intensity
value calculated
from geometry 
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Comparison

31

Light intensity achieved by lens in the experiment
to scorch the wooden sample

𝐼𝑐ℎ𝑎𝑟𝑟𝑖𝑛𝑔 = 14 ± 1.4
𝑘𝑊

𝑚2



15

Comparison

31

Calculated light intensity from the condition of ignition

Light intensity achieved by lens in the experiment
to scorch the wooden sample

𝐼𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ≅ 33
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Comparison

31

Calculated light intensity from the condition of ignition

Light intensity achieved by lens in the experiment
to scorch the wooden sample

Heat flux used to ignite a wooden sample in the article*

𝐼𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ≅ 33
𝑘𝑊

𝑚2

𝐼𝑐ℎ𝑎𝑟𝑟𝑖𝑛𝑔 = 14 ± 1.4
𝑘𝑊

𝑚2

𝜙ℎ𝑒𝑎𝑡 = 15 − 30
𝑘𝑊

𝑚2

Li, Yudong and Drysdale, D.D., 1992. Measurement Of The Ignition Temperature Of Wood. AOFST 1

http://www.iafss.org/publications/aofst/author/10093
http://www.iafss.org/publications/aofst/author/229
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Measurements

Material
Critical Intensity* 
(±10%) [W/m²]

Bond paper (white) 500 000

Dot matrix printing paper 175 000

Cardboard 10 000

Wood 14 000

Black scarf (100% polyacryl) 4 000

Thin blue plastic bag
(polyethylen)

3 000

32
*to damage the surface
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Wood 14 000

Black scarf (100% polyacryl) 4 000

Thin blue plastic bag
(polyethylen)
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32

scorched
or burned

melted

Theoretical maximum
for Brusnianka is ~1 280 000𝑊/𝑚2

(depends on Sunlight intensity)

CONFIRMED BY AN EXPERIMENT

?

Albedo > 60%
¼ energy absorbed by water in IR region
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THANK YOU FOR YOUR ATTENTION!

Martin Murin
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Appendix A: Derivation of intensification

36

𝑆𝑖𝑚𝑎𝑔𝑒 = 𝑆𝑠𝑜𝑙 ×𝑚𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛²

𝐼 = 𝑘 𝐼0
𝑆𝑙𝑒𝑛𝑠
𝑆𝑠𝑜𝑙

𝑑𝑠𝑜𝑙
2

𝑓2

Power is conserved

𝐼 × 𝑆𝑖𝑚𝑎𝑔𝑒 = 𝑘 𝐼0 × 𝑆𝑙𝑒𝑛𝑠

𝑚𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =
ℎ′

ℎ
=
𝑎′

𝑎
=

𝑓𝑎
𝑓 − 𝑎

𝑎
=

𝑓

𝑓 − 𝑎
=

𝑓

𝑓 − 𝑑𝑠𝑜𝑙
𝑆𝑠𝑜𝑙 = 1.52 × 1018 𝑚2

𝐼 = 𝑘 𝐼0
𝑆𝑙𝑒𝑛𝑠
𝑆𝑖𝑚𝑎𝑔𝑒

𝐼 = 𝑘 𝐼0
𝑆𝑙𝑒𝑛𝑠
𝑆𝑠𝑜𝑙𝑀

2

𝐼 = 𝑘 𝐼0
𝑆𝑙𝑒𝑛𝑠

𝑆𝑠𝑜𝑙
𝑓

𝑓 − 𝑑𝑠𝑜𝑙

2
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• The only relevant optical property of liquid is the index of refraction

Appendix B: Different liquids in bottle

37

1

𝑓
= 𝑛 − 1

1

𝑅1
−

1

𝑅2
+

𝑛 − 1 𝑑

𝑛𝑅1𝑅2

“Lensmaker’s equation”

(for sphere)

• The smaller the focal length, the smaller the magnification

• The smaller the magnification, the higher the intensity

𝐼 = 𝑘 𝐼0
𝑆𝑙𝑒𝑛𝑠
𝑆𝑠𝑜𝑙

𝑑𝑠𝑜𝑙
2

𝑓2

𝑖𝑚𝑎𝑔𝑒 𝑎𝑟𝑒𝑎 = 𝑆𝑜𝑙𝑎𝑟 𝑎𝑟𝑒𝑎 × 𝑚𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛²
𝑚𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =

𝑓

𝑓 − 𝑑𝑠𝑜𝑙
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y = -6E-05x2 - 0,0029x + 920,21
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Appendix C: Time evolution of temperature

38

𝕕𝑇

𝕕𝑡
= −6 × 10−5 𝑇2− 2.9 × 10−3 𝑇 + 920.21

𝑇 =
−3379.95 + 3940.47 𝑒0.47 𝑡

0.868404 + 𝑒0.47 𝑡

Using constants for ignition of wood

𝑚 = 7 × 10−7kg
𝑘 = 2000

J

kg K

𝑆 = 10−6m²
𝑐 = 0.05

W

m K

ℎ = 20
W

m2 K

𝜖 = 0.5

𝜎 = 5.67 × 10−8
W

m2 K4

𝑇0 = 300 K

𝑙 = 5 × 10−4 m

𝐼𝑖𝑛 = 1000
W

m2

𝑚𝑘
𝕕𝑇

𝕕𝑡
= 1 − 𝜖 𝐼𝑖𝑛𝑆 + 𝑐

𝑆

𝑙
+ ℎ𝑆 Δ𝑇 − 𝜎𝜖𝑆𝑇4



15

39

𝑚𝑘
𝕕𝑇

𝕕𝑡
= 1 − 𝜖 𝐼𝑖𝑛𝑆 + 𝑇0 𝑐

𝐴

𝑙
+ ℎ𝑆 − 𝑐

𝐴

𝑙
+ ℎ𝑆 𝑇 − 𝜎𝜖𝑆𝑇4
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Appendix D: Used materials – dot matrix paper

40
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Appendix E: Experiments – conditions during 
critical intensity measurement

41

Lens parameters:
focal length 0.216 ± 0.004 m
radius of curvature 0.137 m
lens radius 0.073 m
index of refraction* 1.517 * crown glass, 589 nm, encyclopedia Britannica

Measurement data:
date and time 6th January 2015 at 12:00 - 13:00
weather sunny, no clouds
sunlight intensity [W/m²] 380 (Bratislava airport), 330 (Koliba)

Position of the Sun
altitude 12:10 19° 16´ 37´´

12:30 18° 59´ 57´´
13:00 17° 59´ 47´´

apparent diameter 00° 32' 32''
Solar diameter 1.391 × 109 m
distance from Earth 0.98328 AU = 1.47097 × 1011 m
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Appendix E: Experiments – time vs albedo

42

Paper with different color (albedo) measured by albedometer

Round bottom boiling flask

𝑟 = 4.2 cm
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Appendix F: Light intensity ratio from a photo

43

1. Capture in RAW format

2. Convert to TIFF using dcraw* program
- No color interpolations, compression, white balance…

3. Set linear colorspace in Photoshop

4. Open linear TIFF in PS canceling any suggestions for “improvements”

5. Read RGB values and compare them within one image

6. Try different exposition times and verify that
2x longer exposition gives 2x grater RGB values

http://www.cybercom.net/~dcoffin/dcraw/
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Appendix G: Visual data – caustic curve

44
Image courtesy of Jakub Trávník at http://jtra.cz
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Appendix G: Visual data – focused light on CMOS

45
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Appendix G: Visual data – focused light on CMOS
(comma aberration)

46
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Appendix H: Additional data – electromagnetic 
absorption by water

47
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Appendix H: Additional data – intensity of solar 
irradiance during the day

48
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Appendix H: Additional data – ignition data 

49
Li, Yudong and Drysdale, D.D., 1992. Measurement Of The Ignition Temperature Of Wood. AOFST 1

http://www.iafss.org/publications/aofst/author/10093
http://www.iafss.org/publications/aofst/author/229
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Appendix H: Additional data – thermal conductivities

50
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Appendix H: Additional data – Fresnel equations

51

𝑟𝑠 =
𝑛1 cos 𝜃𝑖 − 𝑛2 cos 𝜃𝑡
𝑛1 cos 𝜃𝑖 + 𝑛2cos(𝜃𝑡)

𝑟𝑝 =
𝑛2 cos 𝜃𝑖 − 𝑛1 cos 𝜃𝑡
𝑛1 cos 𝜃𝑡 + 𝑛2cos(𝜃𝑖)

𝑡𝑠 =
2𝑛1 cos 𝜃𝑖

𝑛1 cos 𝜃𝑖 + 𝑛2 cos 𝜃𝑡

𝑡𝑝 =
2𝑛1 cos 𝜃𝑖

𝑛1 cos 𝜃𝑡 + 𝑛2cos(𝜃𝑖)


