

IYPT - AUSTRALIA
QUESTION 17: CRAZY SUITCASE

Reporter: Jeong Han Song

PROBLEM

When one pulls along a two wheeled suitcase, it can under certain circumstances wobble so strongly from side to side that it can turn over. Investigate this phenomenon. Can one suppress or intensify the effect by varied packing of the luggage?

TERMS \& DEFINITIONS

When one pulls along a two wheeled suitcase, it can under certain circumstances wobble so strongly from side to side that it can turn over. Investigate this phenomenon. Can one suppress or intensify the effect by varied packing of the luggage?

(a) Front View

(b) Side View

$$
\tau=F d
$$

Detachment of both wheels

$$
\begin{aligned}
& L=\text { length }=40 \mathrm{~cm} \\
& H=\text { height }=50 \mathrm{~cm}
\end{aligned}
$$

$B=$ distance between two wheels $=39 \mathrm{~cm}$

$$
W=\text { width }=20 \mathrm{~cm}
$$

FLOW CHART

Qualitative
Analysis

- Stages of motion of the wobbling suitcase
- Condition of overturn

Experiment

- Measurement of angular
displacement
- Computational

Analysis

- Angular

Acceleration
(Derivation of force)

Additional

 circumstances- Walking
frequency
- Coefficient of Restitution
- Different mass density
- Angle of tilt

Relevant Condition for Overturn

QUALITATIVE ANALYSIS

Cases for different effective height
Five different phases

STAGE 1:
 INITIAL CONDITION

Titled
Net Force $=0$
No External Force
Acceleration $=0$ (i.e. Constant Speed)
Both wheels are in contact with the floor

Weight of a suitcase

STAGE 2:

EFFECT OF INITIAL DISTURBANCE

(a) Front View

(a) Front View

STAGE 2:

EFFECT OF INITIAL DISTURBANCE (TORQUE)

-Different effect depending on the position of weight
-Case 1: High weight

- Centre of mass now causes rotation about the supporting wheel
- Torque created by the center of mass
- Angular acceleration is present
-Case 2: Low weight
- Low centre of mass acts as a restoring force that opposes the original torque created by the initial disturbance
- Diminishes the wobble effect

(a) Front View

(a) Front View

STAGE 3:

HUMAN RESPONSE

Human exerts a periodic force that opposes the disturbance created by the weight.

Opposite direction to the torque created by the weight

Effect of inertia

(a) Front View

STAGE 4: POINT OF INSTABILITY

Angular Momentum by
The restoring force overshoots Overcompensation of restoring force would lead to the rather sharp increase in the oscillation.

STAGE 5: REPETITION AND AMPLIFICATION

When a suitcase meets a critical amplitude that exceeds what human can counteract, it overturns.

QUALITATIVE MODEL - SUMMARY

CASE 1

Intensifies the initial disturbance (torque is applied in the same direction as disturbance)

CASE 2

Acts as a restoring fbrce (torque
is applied in the opposite
direction as disturbance)

QUANTITATIVE ANALYSIS

Net Torque Equation
Literature Review: Suherman's model Theoretical Prediction (Graphical Simulation)

TORQUE BY WEIGHT

From basic torque equation:

$$
\tau=F \times d_{1}
$$

Force is equivalent to the weight

$$
F=m g
$$

Shortest distance is:
$\Rightarrow \frac{b}{2} \cos \theta-\frac{h}{2} \sin \theta$
$\therefore \tau_{w}=m g\left(\frac{b}{2} \cos \theta-\frac{h}{2} \sin \theta\right) \ldots(1)$

net torque equation

Combining Equation 1 \& 2:

$$
I \frac{d \theta}{d^{2} t}=\tau_{H}-\tau_{w}
$$

$$
I \frac{d \theta}{d^{2} t}=q_{0} \sin (\omega t)-k \theta-m g\left(\frac{b}{2} \cos \theta-\frac{h}{2} \sin \theta\right) \ldots \theta>0
$$

Or

$$
I \frac{d \theta}{d^{2} t}=q_{0} \sin (\omega t)-k \theta+m g\left(\frac{b}{2} \cos \theta+\frac{h}{2} \sin \theta\right) \quad \ldots \theta<0
$$

FINAL NET TORQUE EQUATION

Define: $\quad S=+1$, if $\theta>0 \quad S=-1$, if $\theta<0$
\rightarrow SIMPLE
Final Equation: \qquad
$I \frac{d^{2} \theta}{d t^{2}}=q_{0} \sin (\omega t)-k \theta-\operatorname{Smg} \frac{b}{2} \cos \theta+m g \frac{h}{2} \sin \theta$
b : bottom length of a suitcase
h : effective height
θ : angle of rocking
q_{θ} : amplitude of excitation torque
ω : walking frequency
k : constant for restoring torque

As effective height increases, net torque increases!

THEORETICAL PREDICTION - WOBBLE

Sample Graph from our computer simulation (wolfram alpha) using values below:

LITERATURE REVIEW: SUHERMAN'S RESULTS OVERTURN OF A SUITCASE

1. Sharp change in angular displacement
2. No wobble during the overturn

$$
\begin{aligned}
& \text { ROCKING ANGLE } \vee \operatorname{TIME} \\
& \text { OVERTURN }\left(\theta>\frac{\pi}{2}\right)
\end{aligned}
$$

Experimental Setup
Angular displacement vs. time
Computational Analysis

EXPERIMENT

EXPERIMENTAL SETUP

Height varied: $0.08 \mathrm{~m}, 0.16 \mathrm{~m}, 0.24 \mathrm{~m}, 0.32 \mathrm{~m}, 0.4 \mathrm{~m}$

SET B

Trackers Video Analysis

RESULT 1: 0.08M EFFECTIVE HEIGHT OF CM

- Very minimal angular displacement
- Inaccurate measurement (interval: 0.1s)
- Hard to observe trend or data

SIMULATING THE EQUATION

In [2]: import numpy
data $=$ numpy. genfromtxt (txt_file_name)
Y_data $=$ numpy.genfromtxt (txt_file_name, usecols=1)
Coef $=$ numpy.fft.fft(y_data)
Freq $=$ numpy.fft.fftfreq(len(y_data))
import matplotlib.pyplot as plt
Abs_Coef $=$ numpy.abs (Coef)
\%matplotlib inline
\#plt.plot (Freq[:int (len(Freq)/2)], Abs_Coef[:int(len
Pop_Coef $=$ Coef[:equation_length]
Pop_Freq $=$ Freq[:equation_length]
def graph (formula, x_range):
$\mathrm{x}=$ numpy.array (x_range)
$\mathrm{y}=$ eval(formula)
plt.plot(x, y)
plt.show()
$0+(1.67571644042+0 j) *$ numpy $\cdot \exp (0.0 j * x)+(-0.39338130797-0.228859443672 j) *$ numpy $\cdot \exp (0.00135869565217 j * x)+(-0.240777118$ $86+0.294098934776 j) *$ numpy $\cdot \exp (0.00271739130435 j * x)+(0.160951518353+0.292344341302 j) *$ numpy $\cdot \exp (0.00407608695652 j * x)+$ $(0.0793870251769-0.0343400073869 j) *$ numpy. $\exp (0.0054347826087 j * x)+(0.128171884923+0.114165718316 j) *$ numpy. $\exp (0.0067934$ $7826087 j * x)+(-0.0789217710141+0.0506876519715 j) *$ numpy $\cdot \exp (0.00815217391304 j * x)+(-0.313683719822+0.177882753422 j)$ *nump $\mathrm{y} \cdot \exp (0.00951086956522 \mathrm{j} * \mathrm{x})+(-0.405657156874-0.341040410623 \mathrm{j}) *_{\text {numpy }} \cdot \exp (0.0108695652174 \mathrm{j} * \mathrm{x})+(0.169831208229-0.27419970$ $\left.{ }_{4291 j}\right) *$ nurnpy $\cdot \exp (0.0122282608696 j * x)+(-0.212322076372-0.0533675435594 j) *$ nurnpy $\cdot \exp (0.0135869565217 j * x)+(-0.16271467461$ $5+0.0991007955451 j) *$ numpy. $\exp (0.0149456521739 j * x)+(-0.237838649698+0.49273818019 j) *$ numpy $\cdot \exp (0.0163043478261 j * x)+(0.2$
$43829604558-0.0486385296346 j) *$ numpy $\cdot \exp (0.0176630434783 j * x)+(-0.122470662683-0.0720897431264 j) *$ numpy $\left.304 j *_{x}\right)+(-0.353615922653-0.0570099119301 j) *_{\text {numpy }} \cdot \exp (0.0203804347826 j * x)+(0.086710240439+0.322257867439 j) *_{\text {numpy }}$.exp
 mpy. $\exp (0.0244565217391 j * x)+(0.83962513333+0.98398930061 j) *$ numpy $\cdot \exp (0.0258152173913 j * x)+(-0.374196414629-0.172350054$ $05 \mathrm{j}){ }^{\text {numpy }}$. $\exp (0.0271739130435 j * x)+(-0.102805844489+0.122797370408 j) *$ numpy $\cdot \exp (0.0285326086957 j * x)+(-0.246036407108+$ $0.240798462224 \mathrm{j}) *$ numpy $\cdot \exp (0.0298913043478 \mathrm{j} * \mathrm{x})+(-0.175279918721+0.255500269622 \mathrm{j}) *$ numpy $\cdot \exp (0.03125 \mathrm{j} * \mathrm{x})+(-0.106895977$ $22-0.0193382571159 j) *$ numpy $\cdot \exp (0.0326086956522 j * x)+(0.179287240967+0.0884711698517 j) *$ numpy $\cdot \exp (0.0339673913043 j * x)+$
 $7826087 j * x)+(0.193100984027+0.151369795795 j) *$ numpy.exp $(0.0380434782609 j * x)+(-0.234993893334+0.0313281826602 j) *$ numpy.e
$\mathrm{xp}(0.039402173913 j * x)+(-0.365722068985+0.0285545452021 j) *$ numpy $\cdot \exp \left(0.0407608695652{ }^{2} \times x\right)+(-0.470760261804-0.13846995373$ $\mathrm{xp}(0.039402173913 j * x)+(-0.365722068985+0.0285545452021 j) *$ numpy $\cdot \exp (0.0407608695652 j * x)+(-0.470760261804-0.13846995373$
$7 j) *$ numpy $\cdot \exp (0.0421195652174 j * x)+(-0.289941859819-0.034611296911 j) *$ numpy $\cdot \exp (0.0434782608696 j * x)+(0.00716723958308+$ $7 j) *$ numpy $\cdot \exp (0.0421195652174 j * x)+(-0.289941859819-0.034611296911 j) *$ numpy. $\exp (0.0434782608696 j * x)+(0.00716723958308+$
$0.306363818756 j) *$ numpy. $\exp (0.044836955217 j * x)+(0.111570601653-0.476449285374 j) *$ numpy $\cdot \exp (0.0461956521739 j * x)+(-0.064$ $5311911822+0.151879156556 j){ }^{\text {nu numpy }} \cdot \exp (0.0475543478261 j * x)+(0.0789154712737+0.123058886322 \mathrm{j}) *$ numpy. $\exp (0.0489130434783$ $j * x)+(0.308350822225-0.321986251638 \mathrm{j}){ }^{*}$ numpy. $\exp (0.0502717391304 \mathrm{j} * \mathrm{x})+(-0.205330549438+0.060822552661 \mathrm{j}) *$ numpy. $\exp (0.051$ $6304347826 j * x)+(-0.111432762432-0.196002257036 j) *$ numpy $\cdot \exp (0.0529891304348 j * x)+(-0.186147288585+0.0571708417067 j) *$ num py. $\exp (0.054347826087 j * x)+(-0.3143266197-0.105088205018 j) *$ numpy $\cdot \exp (0.0557065217391 j * x)+(0.190001549056+0.11156075631$ $8 j) *$ numpy $\cdot \exp (0.0570652173913 j * x)+(-0.138072497087+0.112684426125 j) *$ numpy.exp $(0.0584239130435 j * x)+(-0.057339368746+0$ $212359713763 j) *$ numpy. $\exp (0.0597826086957 j * x)+(-0.233019181104+0.341870946377 j) *$ numpy. $\exp (0.0611413043478 j * x)+(0.28190$ $5611700998-0.0661981914326 j) *_{\text {numpy }} \cdot \exp (0.0652173913043 j * x)+(0.175441186289+0.0283829135648 j) *$ numpy $\cdot \exp (0.066576086956$ $5 j^{* x}$)
equation $=$ str(0)
for i in range (0, len(Pop_Coef)):
equation $=$ equation $+^{\prime}+^{\prime}+\operatorname{str}\left(\right.$ Pop_Coef[i]) $+{ }^{\prime}{ }^{\prime}$ numpy.exp(' + str (Pop_Freq[i]) + 'j*x)'
\#graph(equation, range(0, graph_length))
print('')
print('The equation of the original graph:')
print('')
print (equation)

ORIGINAL GRAPH (MAGNIFIED VERSION)

SECOND DERIVATIVE (ANGULAR ACCELERATION)

RESULT 2: 0.16M EFFECTIVE HEIGHT OF CM

Angle of tilt of the centre of the suitcase from vertical (θ) in radians versus time (\boldsymbol{t}) in seconds, height $\mathbf{2}(\mathbf{0 . 1 6 ~ m})$

SECOND DERIVATIVE (ANGULAR ACCELERATION)

- Angular acceleration vs. time
- $\frac{d \theta}{d t^{2}} \propto \tau$
- Average range:
$-2.49 \sim 3.63(\mathrm{rad} / \mathrm{s} / \mathrm{s})$

RESULT 3: 0.24M EFFECTIVE HEIGHT OF CM

SECOND DERIVATIVE (ANGULAR ACCELERATION)

RESULT 4: 0.32M EFFECTIVE HEIGHT OF CM

SECOND DERIVATIVE (ANGULAR ACCELERATION)

RESULT 5: 0.40M EFFECTIVE HEIGHT OF CM (OVERTURN)

SECOND DERIVATIVE (ANGULAR ACCELERATION)

SUMMARY OF EXPERIMENTAL RESULT (SET A)

Effective Height (m)	Range of angular acceleration (rad/s/s)	Average angular acceleration $(\mathrm{rad} / \mathrm{s} / \mathrm{s})$
0.08	$-1.02 \sim 0.88$	0.95
0.16	$-2.49 \sim 3.63$	3.06
0.24	$-8.87 \sim 8.22$	8.54
0.32	$-9.18 \sim 10.00$	9.59
0.40	Overturn	N/A

As effective height increases:
=Increase in angular acceleration
= Increase in torque
= Increase in wobble
= MORE LIKELY TO OVERTURN

COMPARISON TO THEORETICAL PREDICTION

Theory (Oscillation)

Theory (Overturn)

Experiment (Oscillation)

Experiment (Overturn)

SUMMARY OF EXPERIMENTAL RESULT (SET B)

Weight Dist.	Speed (m/s)	Angle	Wobbles	Ove/turn	Weight Dist.	Speed (m/s)	Angle	Wobbles	Overturn
Pivot wheel	""	70°	1	1	Obstructed wheel	""	70°	0	0
			1	1				0	0
			1	1				0	0
		60°	1	1			60°	0	0
			1	1				0	0
			1	1				0	0
		50°	5	0			50°	0	0
			2	1				0	0
			1	1				0	0
		40°	1						-
			1 1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Potential outlie	@ 50° for	opposit	heel	

RESULTS DISCUSSION (SET B)

The closer the centre of mass to the obstructed wheel the less wobbles/overturns the suitcase will have (Parallel axis Theorem).

Having the centre of mass closer to the pivot wheel causes more instability.

$$
I=I_{C M}+m d^{2}
$$

FURTHER CIRCUMSTANCES OF OVERTURN

Walking speed
Angle of tilt
Mass density
Coefficient of Restitution

1) Angle of tilt vs Walking speed

Degree of tilt	$0.81 \mathrm{~m} / \mathrm{s}$	$0.92 \mathrm{~m} / \mathrm{s}$	$1.04 \mathrm{~m} / \mathrm{s}$
70°	O	O	O
60°	N	O	O
50°	N	O	O
40°	N	N	N

APP FOR WALKING SPEED

ANGLE OF TILT

At $0.81 \mathrm{~m} / \mathrm{s}$, stable until high angles. At $1.04 \mathrm{~m} / \mathrm{s}$, stability reduced (high variations in τ_{H})
2) LOW WEIGHT:

Mass density vs Walking speed

No added mass	$0.92 \mathrm{~m} / \mathrm{s}$
70°	O
60°	O
50°	N
40°	N
1.5 kg mass	$0.92 \mathrm{~m} / \mathrm{s}$
70°	O
60°	O
50°	N
40°	N
3 kg mass	$0.92 \mathrm{~m} / \mathrm{s}$
70°	O
60°	N
50°	N
40°	N
30°	N

3) HIGH WEIGHT:

Mass density vs Walking speed

No added mass	$0.92 \mathrm{~m} / \mathrm{s}$	
70°	O	For low weight: As mass is increased, stability increases.
60°	O	$\tau_{w} \downarrow$
50°	O	
40°	N	
1.5 kg mass	$0.92 \mathrm{~m} / \mathrm{s}$	N
70°	N	For high weight: As mass is increased, stability decreases. $\tau_{w} \uparrow$
60°	N	
50°	N	N
40°	$0.92 \mathrm{~m} / \mathrm{s}$	N

4) COR vs Walking speed

Indoor (COR 0.35)	$0.81 \mathrm{~m} / \mathrm{s}$	$0.92 \mathrm{~m} / \mathrm{s}$	$1.04 \mathrm{~m} / \mathrm{s}$	Outdoor (COR 0.68)	$0.81 \mathrm{~m} / \mathrm{s}$	$0.92 \mathrm{~m} / \mathrm{s}$	$1.04 \mathrm{~m} / \mathrm{s}$
70°	O	O	O	70°	0	0	0
60°	N	O	O	60°	0	0	0
50°	N	O	O	50°	0	0	0
40°	N	N	N	40°	O	-	-

- At lower walking frequency, suitcase was less stable for trials outdoors, due to higher COR and less energy loss.
- At higher walking frequency, energy loss is less significant due to balancing effect of higher walking frequency.

CONCLUSION

Investigated circumstances when suitcase wobbles and turns over.

1. Developed mathematical simulation to model the wobble (FFT)
2. Simulation verified -> Comparison to theory
3. Studied effect of varied packing of the luggage
A. Significance of effective height of CM
B. Effect of other positions of CM vs. Wheel Position
4. Considered other factors that influence the wobble
A. Walking Frequency
B. Angle of tilt
C. Coefficient of Restitution
D. Different mass density

REFERENCE

(n.d.). Retrieved from What is torque?:
https://www.physics.uoguelph.ca/tutorials/torque/Q.torque.intro.html
csep. (n.d.). Retrieved from Conservation of Angular Momentum:
http://csep 10.phys.utk.edu/astr 161 /lect/solarsys/angmom.html
Davis, D. (2002). Eastern Illinoi University. Retrieved from Tangential and Radial Acceleration: http://www.ux 1.eiu.edu/~cfadd/1150/03Vct2D/accel.html

Nave, R. (n.d.). Center of mass. Retrieved from Hyper Physics: http://hyperphysics.phyastr.gsu.edu/hbase/cm.html

Plaunt, R. (1996). Rocking Instability of a pulled suitcase with two wheels. ACTA MECHANIA, 165-179.

TutorVista. (n.d.). Retrieved from Angular Acceleration Formula: http://formulas.tutorvista.com/physics/angular-acceleration-formula.html

ACKNOWLEDGEMENT

Thanks for your time
Mr Richard Jones
Finn Connolly

thank you!
Team of Australia
Reporter: Jeong Han Song

ASSUMPTIONS

1.A constant initial disturbance was employed to start the wobble (e.g. instability) of a suitcase.
2.The suitcase and its wheels were regarded as rigid bodies.
3.Human always responded to the instability by exerting restoring torques that were just enough to stabilise the motion
4. Human response time was always constant

SUITCASE IN 3-DIMENSION

SUITCASE IN 3-DIMENSION

$\mathrm{CM} \rightarrow\left(\frac{a}{2}, \frac{b}{2}, c\right)=(x, y, z)$
Handle $\rightarrow\left(\frac{a}{2}, \frac{b}{2}, c+d\right)=(X, Y, Z)$

SUITCASE IN 3-DIMENSION

Change in co-ordinate when tilted

SUITCASE IN 3-DIMENSION

When a suitcase is initially pulled by a person, there will be a rotation about y-axis.
This rotation is followed by x-axis and z-axis.

POSSIBLE WOBBLING MOTI - GENERAL FORMULA

$\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right)=\left(\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \beta & \sin \beta \\ 0 & -\sin \beta & \cos \beta\end{array}\right)\left(\begin{array}{ccc}\cos \gamma & 0 & \sin \gamma \\ 0 & 1 & 0 \\ -\sin \gamma & 0 & \cos \gamma\end{array}\right)\left(\begin{array}{l}\frac{a}{2} \\ \frac{b}{2} \\ c\end{array}\right)$

POSSIBLE WOBBLING MOTI - GENERAL FORMULA

 $\left(\begin{array}{l}X^{\prime} \\ Y^{\prime} \\ Z^{\prime}\end{array}\right)=\left(\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \beta & \sin \beta \\ 0 & -\sin \beta & \cos \beta\end{array}\right)\left(\begin{array}{ccc}\cos \gamma & 0 & \sin \gamma \\ 0 & 1 & 0 \\ -\sin \gamma & 0 & \cos \gamma\end{array}\right)\left(\begin{array}{c}\frac{a}{2} \\ \frac{b}{2} \\ d+{ }_{z}\end{array}\right)$

NEW
Centre of
Mass

x-axis

PREVIOUS Centre of Mass

POSSIBLE WOBBLING MOTIONS - GENERAL FORMULA

$$
\begin{array}{r}
R_{z} R_{x} R_{y}=\left(\begin{array}{ccc}
\cos \alpha & \sin \alpha & 0 \\
-\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \beta & \sin \beta \\
0 & -\sin \beta & \cos \beta
\end{array}\right)\left(\begin{array}{ccc}
\cos \gamma & 0 & \sin \gamma \\
0 & 1 & 0 \\
-\sin \gamma & 0 & \cos \gamma
\end{array}\right) \\
=\left(\begin{array}{ccc}
\cos a & \sin \alpha \cos \beta & \sin \alpha \sin \beta \\
-\sin a & \cos \alpha \cos \beta & \cos \alpha \sin \beta \\
0 & -\sin \beta & \cos \beta
\end{array}\right)\left(\begin{array}{ccc}
\cos \gamma & 0 & \sin \gamma \\
0 & 1 & 0 \\
-\sin \gamma & 0 & \cos \gamma
\end{array}\right) \\
=\left(\begin{array}{ccc}
\cos a \cos \gamma-\sin a \sin \beta \sin \gamma & \sin \alpha \cos \beta & \cos a \sin \gamma+\sin a \sin \beta \cos \gamma \\
-\cos a \sin \beta \sin \gamma-\sin a \cos \gamma & \cos \alpha \cos \beta & \cos a \sin \beta \sin \gamma-\sin a \sin \gamma \\
-\cos \beta \sin \gamma & -\sin \beta & \cos \beta \cos \gamma
\end{array},\right.
\end{array}
$$

