

Problem 3 Dancing Coin

Reporter: Victor Cortez

Take a strongly cooled bottle and put a coin on its neck. Over time you will hear a noise and see movements of the coin. Explain this phenomenon and investigate how the relevant parameters affect the dance.

CONTENTS

1. Theoretical Introduction

Introduction to the phenomenon

Relevant Principles

Theoretical Model and analysis

Relevant Parameters

2. Experiments

Experimental Set-up

Parameter Variation

Sound

3. Conclusion

Summary

Figure 1: Coin dancing.

Introduction

Relevant principles

Conduction

 $\frac{dQ}{dt} = \frac{kA\Delta T}{L}$ $\frac{dQ}{dt} = c_c A\Delta T$

Figure 2: Scheme of heat conduction in the system.

Relevant Principles

Theoretical Analysis

Relevant principles

Convection

 $rac{dQ}{dt}pprox (c_e+c_i)A\Delta T$

 $c_e
ightarrow$ External Convection

 $c_i
ightarrow$ Internal Convection

Figure 3: Scheme of heat convection in the system.

Introduction

Relevant Principles

Theoretical Analysis

Relevant Parameters

5

Relevant principles

Radiation

Perfect black body:

Real case model:

Figure 4: Scheme of heat radiation on the system.

Relevant Principles

Theoretical Analysis

Figure 5: Scheme of heat transfer on the system.

$$egin{aligned} dQ &= dW + dU & \longrightarrow & dU = (nC_v + C_g) d heta &= \phi dt \ \phi dt &= kA\Delta heta dt \ \Delta heta &= heta_a - heta(t) & \longrightarrow & rac{d heta}{\Delta heta} &= ig(rac{kA}{nC_v + C_g} ig) dt \ &oxed{b} &= rac{kA}{nC_v + C_g} \ eta &= rac{kA}{nC_$$

$$\Delta \theta_{i} = \frac{V\Delta P}{nR} \longrightarrow \Delta \theta_{i} = \Delta \theta_{n} \forall n$$

$$\Delta \theta_{i} = (\theta_{i} - \theta_{0}) - \sum_{n=1}^{i-1} \Delta \theta_{i} \longrightarrow \Delta \theta_{i} = (\theta_{i} - \theta_{0}) - \frac{(i-1)V\Delta P}{nR}$$

$$\theta_{i} = \theta_{a} - (\theta_{a} - \theta_{i-1})e^{-bt}$$

$$\Delta t(i) = \frac{ln(1 + \frac{\Delta \theta_{i}}{\Delta \theta_{f} - i\Delta \theta_{i}})}{b}$$

$$\Delta \theta_{f} = \theta_{a} - \theta_{0}$$

$$\Delta \theta_{i} = \frac{V\Delta P}{nR}$$

Introduction

Relevant Principles

Theoretical Analysis

Theoretical model and analysis: Simulations

Theoretical model and analysis: Simulations

Intervals between consecutive jumps as simulated and as calculated.

Relevant Principles

Pressure needed to raise the coin (theoretical):

Figure 7: Forces acting on the coin.

Relevant Principles

Relevant Parameters

Experimental set-up: The materials

1. Various Bottles;

2. Modern BRL coins of 5 Cents, 25 Cents, 50 Cents and 1 Real;

3. Barometric pressure and temperature module BMP180^[1] (Error: P ± 1 Pa and T ± 0,1 K)

4. Arduino UNO;

5. Computer and Python 3 for data-logging;

6. A good freezer.

Figure 8: Bottle similar to what was used.

Figure 9: Modern BRL coins used.

Experimental set-up: The assembly

Figure 11: Sensor inside the bottle.

Figure 12: Scheme of experimental set-up..

Figure 13: Part of the experimental assembly.

Experimental set-up: The bottles

From left to right:

- 1 Small Bottle (Glass)
- 2 Medium Bottle (Glass)
- **3 Plastic Bottle (Plastic)**
- 4 Reference Bottle (Glass)
- 5 Big Bottle (Glass)
- 6 Small Cylindrical Bottle (Glass)
- 7 Big Cylindrical Bottle (Glass)

Figure 14: The bottles used in experiments.

Experimental set-up: The procedure

Parameter variation: Medium

Figure 15: Typical plot from an experiment with no manual contact. The cyclical nature of the internal pressure is noticeable.

Experimental Set-up

ΔP ≈ 260 Pa

Parameter variation: Temperature

Parameter variation: Temperature

Temperature as a function of time.

Parameter variation: Temperature

Time interval between consecutive jumps

Parameter variation: Area

 ΔP as a function of the bottle's mouth diameter.

Parameter variation: Mass

Medium **Theoretical** ΔP 300 Experimental ΔP Temperature AP (Pa) Area 200 Mass 100 Shape Material 5 7 8 9 10 Mass of the coin (g)

 ΔP as a function of the mass of the coin.

Parameter variation: Shape and material

	Bottle	Experimental <i>b</i> (s ⁻¹ x 10 ⁻³)	Medium
	1	4.50 ± 0.02	
	2	3.70 ± 0.02	Temperature
	3	10.3 ± 0.4	Area
	4	2.83 ± 0.01	
	5	2.63 ± 0.01	Mass
14 % (A) (A)	6	3.42 ± 0.01	Shape
	7	2.77 ± 0.07	Matorial
I	Table 1 - Coefficient <i>b</i> measured for each bottle.		Material

Sound

$fpprox(1845\pm2) ext{Hz}$

Figure 22: Graphical visualization of the jump sound.

 $76 \mathrm{ms} \leq \Delta T \leq 153 \mathrm{ms}$

Sound

Summary: Theory

Summary: Experiments

Comparison of temperature as a function of time

Bibliography

[1] BOSCH, (5 de Abril de 2013), BMP180 Data sheet,

<a><<u>https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf</u>, Acessed in: 29/01/2018. [2] KREITH, F. et al. Princípios de Transferência de Calor. 1 ed. São Paulo:Cengage Learning, 2003. [3] H.Moysés Nussenzveig, Curso de Física Básica, vol 2, Editora Edgard Blücher, LTDA (1999) [4] Bailey, R. and Elban, W. (2018). Thermal Performance of Aluminum and Glass Beer Bottles.

Thank you!

Appendix 1: Measuring the ΔP

Appendix 2: Geometry of the bottle

Area (m²)	0,0306
Mouth diameter (mm)	19,30
=Height (mm)	225
Volume (L)	0,330
Average thickness (mm)	3,54

Thickness \approx Constant

Appendix 3: Van der Waals vs Clapeyron

 $P_w = \frac{nRT}{V-nh} + n(\frac{a}{V})^2$ $\Delta P_w = rac{nRT_1}{V-nh} + n(rac{a}{V})^2$ $-\left(\frac{nRT_2}{V-nh}+n(\frac{a}{V})^2\right)$ $\Delta P_w = rac{nR(T_1 - T_2)}{V_w - mh}$

$$egin{aligned} P_c &= rac{nRT}{V} \ \Delta P_c &= rac{nRT_1}{V} - rac{nRT_2}{V} \ \Delta Pc &= rac{nR(T_1 - T_2)}{V} \ n pprox 0.0147 \, mol \end{aligned}$$

$$h \approx 0.0147~mo$$
 $b pprox 0.0387~rac{L}{mol}$ $V pprox 0.33L$ $rac{V-nb}{V} pprox 0.998$

Appendix 4: Sound frequency analysis

Sound spectrum given through fourier transform using Audacity

Appendix 5: Experimental errors

