III

IYNT 2015

Problem № 9 «Space Distances»

Team «MG 12»

Problem 9

How do astronomers measure distances between the planets of the Solar System, between the stars in our Galaxy, or between the galaxies? Determine the distance between the two space objects of your choice.

Hypothesis

The most efficient way to determine the distance between space objects in school conditions is to use the Titius-Bode formula or the method of parallax.

The measurement of space distances can be conducted by:

- Radio telescopes
- Laser ranging method
- Method of redshift
- Titius-Bode formula
- method of parallax

Space distances

In the process of solving the problem we decided to measure the distance between Jupiter and Saturn using two methods:

- parallax
- Titius-Bode formula.

Solution №1. Jupiter

$$
R=R 5 \bar{\sigma}^{\prime} 8 \theta^{\prime} \theta \theta \theta^{\prime} R M Q, k g \dot{p}_{1} \approx \frac{1}{5}
$$

Solution №1. Jupiter

- $\boldsymbol{t g} p_{1}=p_{1}$

$$
p_{1}=\frac{R_{1}}{r_{1}} ; r_{1}=\frac{R_{1}}{p_{1}}
$$

$$
r_{1}=\frac{150^{\prime} 000^{\prime} 000}{0,2}=750^{\prime} 000^{\prime} 000 \mathrm{~km}
$$

Solution №1. Saturn

$$
R_{2}=150,000 \cdot 600 \mathrm{~km} ; \operatorname{tg} p_{2} \approx \frac{1}{10}
$$

Solution №1. Saturn.

- $\boldsymbol{t g} \boldsymbol{p}_{2}=\boldsymbol{p}_{2}$

$\dot{p}_{2}=\frac{R_{2}}{r_{2}} ; r_{2}=\frac{R_{2}}{p_{2}}$
$r_{2}=\frac{150^{\prime} 000^{\prime} 000}{0,1}=1^{\prime} 500^{\prime} 000^{\prime} 000 \mathrm{~km}$

Solution №1

The distance between Jupiter and Saturn is:

$$
\mathbf{r}_{2}-\mathbf{r}_{1}=\mathbf{r}
$$

$\mathbf{1}^{\prime} 500^{\prime} \mathbf{0 0 0} \mathbf{o n}^{\prime} 000 \mathrm{~km}-\mathbf{7 5 0}^{\prime} \mathbf{0 0 0}{ }^{\prime} \mathbf{0 0 0} \mathrm{km}$
 $=750^{\prime} 000^{\prime} 000 \mathrm{~km}$

Solution №2

- Theesceond way affsolkiing the prioblem = Titius-Bode formulba:

$$
r=0,4+0,3 \times 2^{i}
$$

 abljgett, and i iissthe number off a cellestiiall olbject startìng

rrisisexpressuediinau((axstnomomicall umit).

Solution №2

11. Distance bent Earithand Juwpiter:

$$
\begin{gathered}
r_{1}=0,4+0,3 \times 2^{4} \\
r_{1}=\mathrm{a}, 2 \mathrm{au}
\end{gathered}
$$

22. Distramee beethweem Eantill amd Saturrn:

$$
\begin{gathered}
r_{2}=0,4+0,3 \times 2^{5} \\
r_{2}=10 \mathrm{au}
\end{gathered}
$$

3. Bistance between Jupiter and Saturn:

$$
r_{2}-r_{1}=r
$$

$10 \mathrm{au}-5,2 \mathrm{au}=4,8 \mathrm{au}$

Solution №2

$\mathrm{au}=150 \tau^{r} 000 \tau^{r} 000 \mathrm{~km}$

4,8 $\mathrm{au} \times 150 \tau^{r} 000 \tau^{\prime} 000 \mathrm{~km}=\mathbf{7 2 0}^{\prime} \mathbf{0 0 0} \mathbf{0 0 0} \mathrm{km}$
According to our calculations, the distance between Jupiter and Saturn is $720^{\prime} 000^{\prime} 000 \mathrm{~km}$ or 4,8 au

Conclusion

Distance between Jupiter and Saturn

According to resources
$655^{\prime} 000^{\prime} 000 \mathrm{~km}$
$750^{\prime} 000^{\prime} 000 \mathrm{~km}$
Method of parallax
Titius-Bode formula
$720^{\prime} 000^{\prime} 000 \mathrm{~km}$

Information resources

1. https://en.wikipedia.org/wiki/Titius_-_Bode_law
2. https://en.wikipedia.org/wiki/Saturn
3. https://en.wikipedia.org/wiki/Jupiter
4. http://en.wikipedia.org/wiki/Parallax
5. Zasov A.V., Kononovich E.V. Astronomy. Moscow: Fizmatlit, 2011, 255pg.
