Fluid Bridge

Alexander Barnaveli
Georgia

If a high voltage is applied to a fluid (e.g. deionized water) in two beakers, which are in contact, a fluid bridge may be formed. Investigate the phenomenon. (High voltages must only be used under appropriate supervision - check local rules.)

Presentation Plan

- 1. Experiment
- 2. Reasons of fluid bridge formation
- 3. Parameters of our bridge
- 4. Comparison of theory and experiments
- 5. Other effects
- 6. Conclusion

Experiment

ვიდეო

Factors of fluid bridge formation

- ✓ Electric forces
- ✓ Surface tension
- ✓ Structurization of water molecules due to electric field

Process Beginning

Force acting on a fluid cylinder

- Distance between beakers
- **L** Bridge length
- $A=\pi R^2$ Cross-section area.
- Electric field intensity along the cylinder axis
- $D = \varepsilon E$ Electric induction (displacement)
 - Dielectric permeability

- ✓ Due to polarization, at the end of the cylinder appears charge equal to: $\pm Q$.
- ✓ In Gauss unit system:

$$4\pi\sigma = \Delta D = (\varepsilon - 1)E = 4\pi \frac{Q}{A}$$
 (1)

✓ Cylinder tension force:

$$\tau = QE$$

✓ From (1) -

$$\frac{\tau}{A} = \left(\frac{\varepsilon - 1}{4\pi}\right) E^2$$

(2)

Length of the liquid cylinder

L - Distance between beakers

L_c - Bridge length

 $A=\pi R^2$ - Cross-section area.

E - Electric field along the cylinder axis

 $D = \varepsilon E$ - Electric induction (displacement)

E - Dielectric permeability

Weight of the bridge is $Mg = \rho gAL_c$. It is compensated by tension force $Mg = 2\tau \sin \theta$

Taking in account (2) and assuming that $L_c \approx \frac{L}{\cos \theta}$, we get

$$L \approx \frac{(\varepsilon - 1)E^2}{4\pi\rho g} \cdot \sin 2\theta$$

If $\theta \approx 15^{\circ}$, We get approximately $L \approx 2$ cm

Shape of fluid bridge

- ➤ Water bridge is "elastic liquid heavy rope" fixed by its ends.
- > Bridge has so called "Chain" shape.
- \triangleright Bridge "linear specific" weight is $-\rho gA$.
- ightharpoonup Tension force $-\tau$.
- \triangleright Distance between fixing points L.

Heavy chain line equation is (D.Douglas, R.Thrash):

$$y(x) = \frac{\tau}{\rho gA} \cdot \left[\cosh\left(\frac{\rho gA}{\tau}x\right) - 1 \right] \approx \frac{\rho gA}{\tau} x^2 \qquad (3) \qquad \frac{\tau}{A} = \left(\frac{\varepsilon - 1}{4\pi}\right) E^2 \qquad (2)$$

Inserting (2) into (3) we get:

$$y(x) = \frac{(\varepsilon - 1)E^2}{4\pi\rho g} \cdot \left[\cosh\left(\frac{4!}{(\varepsilon - 1)E^2}x\right) - 1 \right] \approx \frac{4\pi\rho g}{(\varepsilon - 1)E^2}x^2$$
 (4)

$$h = \frac{(\varepsilon - 1)E^2}{4\pi\rho g} \cdot \left[\cosh\left(\frac{2\pi\rho gL}{(\varepsilon - 1)E^2}\right) - 1 \right] \approx \frac{\pi\rho gL^2}{2(\varepsilon - 1)E^2}$$
 (5)

Comparison to experiment

We can estimate the "sag" of the bridge in our experiment:

- $\checkmark L = 2cm$
- $\checkmark \rho = 1g/cm^3$
- $\checkmark g=980cm/sec^2$
- \checkmark E=10KV/cm \approx 35 CGSE
- √ E=80

In our case

 $h \approx 1 mm$

Surface tension

Surface tension also compensates gravitational force:

$$\rho gAL_c \cong 2l\gamma\theta$$

Surface tension also tries to split the bridge into droplets

In case of electric field, it is energetically "favorable" for bridge surface to stay unperturbed (*Aerov 2011*).

For bridge stability, electric field has to be larger than critical one ($Aerov\ 2011$):

$$E \geq E_{critical} \sim \frac{L\sqrt{\gamma}}{\varepsilon\sqrt{A}}$$

Structure of the bridge

Various effects

- Crawling on the wall
- Evaporation
- Liquid flow in beakers
- Droplets

Crawling on the wall

In case of electric field, Bernoulli equation is as follows:

$$P + \frac{1}{2}\rho v^2 + \rho gz - \frac{(\varepsilon - 1)E^2}{8\pi} = const \quad (Widom et al 2009)$$

Polarized dielectric fluid can crawl on the wall on a height equal to:

$$z = \frac{(\varepsilon - 1)E^2}{8\pi\rho g}$$

In our case, water can crawl on wall up to 2-3 cm

height

"Droplet effect"

Droplet effect

Evaporation

Evaporation

Liquid flow in beakers

- Liquid flows in beakers when ions are present
- Liquid flows mainly in direction of anode, because negative ions are massive

Conclusion

- In case of high voltage, between the beakers appears a liquid bridge
- ➤ The main factors of fluid bridge stability are:
 - 1. Electric forces
 - 2. Surface tension of liquid
 - 3. Molecular structures
- Electric field and surface tension forces are needed for bridge not to be torn.
- Experimental and theoretical results coincide quite well
- There are signs of molecular structures
- Observed liquid bridge oscillations

Thank you for attention!

Reference

- 1. A. Widom, J. Swain, J. Silverberg, S. Sivasubramanian, Y. N. Srivastava. Theory of the Maxwell pressure tensor and the tension in a water bridge. PHYSICAL REVIEW E 80, 016301, 2009. p. 016301-1.
- 2. D.A. Douglass, R. Thrash. Sag and Tension of Conductor. Taylor & Francis Group, LLC. 2006.
- 3. A. Aerov. Why the Water Bridge does not collapse, Phys. Rev. E 84 (2011) 036314