

Liara Guinsberg

Problem 13

A thin, downward flow of viscous liquid, such as honey, often turns itself into circular coils. Study and explain this phenomenon.

Problem 13: Honey coils

Video

Increasing height

Problem 13: Honey coils

Introduction

Theoretical formulation

- Surface tension
 - Plateau-Rayleigh instability
- Viscosity
- Newtonian fluids
- Fluid conditions
 - Initial conditions

- Coiling conditions
- Torsions and Tensions
- Regimes

Experiments

- Honey
- Cane molass

- Oils
- Shampoo

Comparison between the theory and the experiments

Graph comparison

Regimes and conditions

Surface tension

- The interior molecules have as many neighbors as they can.
- For the liquid to minimize its energy state, the number of higher energy boundary molecules must be minimized.
- The minimized quantity of boundary molecules: minimized surface area.

Plateau-Rayleigh instability

 The surface tension causes some oscillations in the jet, sometimes breaking it into droplets, to minimize surface area.

00000E3 MCS

© 2007 Lars Röntzsch

Instabilities

Surface tension:

Team of Brazil: Liara Guinsberg, Amanda Marciano, Denise Christovam, Gabriel Demetrius, Vtor Melo Rebelo Reporter: Liara Guinsberg

Viscosity

 It's the fluid property by which a fluid offers resistance to shear stresses.

$$\tau = \mu \frac{du}{dy}$$

 The physical origins are the intermolecular forces and transfer of molecular momentum.

Newtonian and non-Newtonian fluids

- A fluid can be considered Newtonian when the viscous stress is proportional to the deformation rate with time, in every point of the fluid.
- A fluid is non-Newtonian has variable viscosity with applied shear stress

Shear thinning

- Happens on non Newtonian fluids
- The viscosity decreases with the increase of the shear stress.
- Causes phenomena like Kaye effect
- We can study it briefly with shampoo, glycerin and many others.

Kaye effect

Initial conditions

 First, we suppose the fluid stream is completely vertical before touching the solid surface:

That implies:

No coiling formation before the fluid touches the surface

Boundary conditions

Problem 13: Honey coils

Torsions and tensions along the fluid rope

- Why does the jet changes its format after its collision with a rigid surface?
 - The jet has a velocity when touching the rigid surface
 - It has to slow down to zero, so there's a force directed upwards, that goes along the fluid stream and changes its form
 - There's a torsion caused by this tension
 - Thus, for the smaller energy, we can have the coiling phenomena.

Coiling conditions

- Minimal viscosity for the coil to happen
- Maximum height, because of the Plateau-Rayleigh instability
- Surface tension relevance, for visible coils and minimum height.

Regimes

- We can see a relation of the coiling frequency with the height of fall
- As we increase the height, some buckling instabilities appear, and we define 4 regimes.

Theoretical analysis

- H- Height
- **R- Coil radius**
- Ω- Rotational frequency
- ρ- Density
- v- Viscosity
- y- Surface tension
- a- Fillet radius at the contact point
- d-Injection diameter
- Q- Volumetric rate of fluid insertion

Problem 13: Honey coils

Definitions

$$U_1 = R\Omega$$

Used in formulations

$$\delta \sim \left(\frac{vQ}{g}\right)^{1/4}$$

Defines geometrical properties in the bending region

 a_1

Theoretical analysis

- Viscous regime:
 - Smaller heights
 - Gravitational effect negligible
 - Inertial effect negligible

$$R \sim H$$

$$\Omega \sim \frac{Q}{Ha_1^2}$$

Problem 13: Honey coils

1.5 % of normal velocity 2000 fps camera Silicone oil 5000 cst

Theoretical analysis

- Gravitational regime:
 - Gravitational effects are the most relevant ones

$$\delta \sim \left(\frac{vQ}{g}\right)^{1/4}$$

$$R \sim \delta \left(\ln \frac{H}{\delta} \right)^{1/2}$$

$$\Omega \sim \frac{U_1}{\delta} \left(\ln \frac{H}{\delta} \right)^{-\frac{1}{2}}$$

Gravitational regime movies

Honey, 2000 cst 60 fps

Fall height: 5 cm

Flow rate:

25% of original velocity

Silicone oil, 5000 cst

2000 fps

Fall height: 5 cm

Flow rate:

1.5% of original velocity

Theoretical analysis

- Inertial-Gravitational regime
 - Both gravitational and inertial forces are considerable
 - There're resonant frequencies

Problem 13: Honey coils

Team of Brazil: Liara Guinsberg, Amanda Marciano, Denise Christovam, Gabriel Demetrius, Vtor Melo Rebelo Reporter: Liara Guinsberg

Theoretical analysis

- Inertial regime:
 - Inertial effects are more important than the gravitational and viscous

$$R \sim \left(\frac{va_1^4}{Q}\right)^{1/3}$$
 $a_1 \sim (vQ/gH^2)^{1/2}$
 $a_1 \sim (Q^2/gH)^{1/4}$

$$\Omega \sim \left(\frac{Q^4}{\nu a_1^{10}}\right)^{\frac{1}{3}}$$

Inertial regime movies

Instabilities

- From the equations: $R \sim \left(\frac{va_1^4}{Q}\right)^{1/3} a_1 \sim (vQ/gH^2)^{1/2}$
- We see, from the substitution of R, we have:

$$R \sim \left(\frac{v^3 Q}{gH^2}\right)^{\frac{1}{3}} \propto v$$
 $a_1 \sim \left(\frac{vQ}{gH^2}\right)^{\frac{1}{2}} \propto \sqrt{v}$

 There's a moment when the radius R is smaller than the filet radius a. The coil formation is ceased.

Materials used

- Honey
- Corn syrup
- Silicone oils
- Shampoo
- Glycerin

Experimental setup

Problem 13: Honey coils

Experimental procedure

Problem 13: Honey coils

Material used	Viscosity
Corn syrup	1800 cst
Honey	2000 cst
Silicone oil	5000 cst
Silicone oil	500 cst

Obtaining data

Data analysis

Viscous regime

We used a high speed camera (2000 fps)

 Height of the fluid measured by using a fixed ruler and Video Point®

Gravitational regime

Inertial gravitational regime

Inertial regime

Instabilities

Obtaining data

Problem 13: Honey coils

Viscous regime – Honey, 2000 cst

Data analysis	Fall height	Angular frequency	Theoretical prediction	Relative error
Viscous regime	1.0 cm	25 Hz	27 Hz	7.4%
Gravitational regime	4.0 cm	45 Hz	39.0 Hz	15.3%
Inertial gravitational regime	8.0 cm	140 Hz	148 Hz	5.1%

Inertial regime

Instabilities

Viscous regime

Gravitational regime

Inertial regime

Honey - Graph

Problem 13: Honey coils

Viscous regime – Silicone oil, 5000 cst

Data analysis	Fall height	Angular frequency	Theoretical prediction	Relative error
Viscous regime	0.5 cm	121.2 Hz	111.2 Hz	8.2%
Gravitational regime	3.2 cm	154.8 Hz	156.4 Hz	0.9%
Inertial gravitational regime	13.6 cm	689.2 Hz	662.8 Hz	3.8%
Togmic				

Inertial regime

Instabilities

Viscous regime

Gravitational regime

Inertial regime

Silicone oil graph – 5000 cst

Problem 13: Honey coils

Viscosity variation

Data analysis

Viscous regime

 For the viscosity variation, we used silicone oils with the same surface tension, density and fall height.

Gravitational regime

Inertial gravitational regime

Viscosity	Surface tension	Density
500 cst	21.2 dynes/cm	0.970 g/cm ³
1000 cst	21.2 dynes/cm	0.970 g/cm ³
5000 cst	21.4 dynes/cm	0.975 g/cm ³
60000 cst	21.5 dynes/cm	0.976 g/cm ³
63775 cP		1.03 g/cm ³

Problem 13: Honey coils

Comparative videos

Data analysis

Viscous regime

Gravitational regime

Inertial gravitational regime

Inertial regime

Comparing theoretical and experimental results

Data analysis

Viscous regime

Gravitational regime

Inertial gravitational regime

Inertial regime

- From our instability analysis:
 - Surface tension reduces the visibility of the phenomena
- Experiment to see its effects:
 - Observe the smaller heights for the phenomena still be seen:
 - Honey (control)
 - Honey with salt (higher surface tension)
 - Honey with a bit of detergent (smaller surface tension)

Problem 13: Honey coils

Comparing theoretical and experimental results

Data analysis

Viscous regime

Gravitational regime

Inertial gravitational regime

Inertial regime

Instabilities

Honey - detergent

0.6 cm

Honey - control

1.0 cm

Honey - salt

1.3 cm

Experimental setup – Honey and water

Cup with water
Honey
Syringe
Tripod
Pneumatic piston

Fluid variation

- We can use another surrounding medium, such as water.
- We get some interesting phenomena:

Comparing theoretical and experimental results

Data analysis

Viscosity

Viscous regime

 It's possible to notice changes in the coil formation by changing its viscosity

Gravitational regime

Inertial gravitational regime

Inertial regime

Conclusion

 The phenomena can be divided in 4 phases, depending on the fall height:

Conclusion

 The coiling can appear in many fluids, but the visualization depends on the surface tension and viscosity.

Conclusion

 We can analyze the problem in a quantitative way, depending on height, viscosity and flow rate.

Problem 13: Honey coils

References

- Multiple coexisting states of liquid rope coiling By N. M. RIBE1, H. E. HUPPERT2, M. A. HALLWORTH2, M. HABIBI3,4 AND DANIEL BONN
- Coiling of viscous jets By Neil M. Ribe
- Liquid Rope Coiling, by Neil M. Ribe, Mehdi Habibi and Daniel Bonn, Annu. Rev. Fluid Mech. 2012
- Mahadevan L, Ryu WS, Samuel ADT. 1998. Fluid 'rope trick' investigated. Nature
- The Bouncing Jet: A Newtonian Liquid Rebounding off a Free Surface, Matthew Thrasher,* Sunghwan Jung,† Yee Kwong Pang,‡ Chih-Piao Chuu, and Harry L.
- The meandering instability of a viscous thread, Stephen W. Morris, Jonathan H. P. Dawes, Neil M. Ribe, and John R.
- Bending-Filament Model for the Buckling and Coiling Instability of Viscous Fluid Rope, Shin-ichiro Nagahiro, Yoshinori Hayakawa
- The folding motion of an axisymmetric jet of wormlike-micelles solution, Matthieu Varagnat, Trushant Majmudar, Will Hartt, Gareth H. McKinley

Problem 13: Honey coils

Appendix summary

Theoretical deduction

- Formulations
- Considerations
- Boundary conditions

Experiment variation

- Water and honey
- Honey sewing machine

Data getting

- Graphs and tables
- How to get frequency
- Unity of graphs and physical meaning

- We have, in the problem, the parameters:
 - We define the Cartesian coordinates **x**(s, t), radius a(s, t), where s is the measurement of the arc along the axis.
 - In this way, we have:

$$\mathbf{d}_3(s,t) = \mathbf{x}'$$

- Where the prime denotes a partial derivative in relation to s, and we'll use this notation from now on.
- The inverters were defined in each point along the axis that follow the section plane of the filet of the fluid.

Appendix

Other than that, it's necessary to define the inverters, following the fluid's rotation.

$$\mathbf{d}_{1}(s, t)$$

$$\mathbf{d}_{2}(s, t) \equiv \mathbf{d}_{3} \times \mathbf{d}_{1}$$

$$\mathbf{d}'_{i} = \kappa \times \mathbf{d}_{i}$$

$$\kappa \equiv \kappa_{i} \mathbf{d}_{i}$$

Modified image from Ribe (2004) and obtained from Liquid Rope Coiling, Neil M. Ribe,1 Mehdi Habibi,2 and Daniel Bonn3, Annu. Rev. Fluid Mech. 2012

Appendix

- We can introduce a velocity vector of the fluid in the axis:
 V≡Vi di
- Thus, follows the relation of V and x:

$$\frac{D\mathbf{x}}{Dt} = \mathbf{V}$$

 We need then to relate the deformation rate by compression, flexion and rotation. The stretching rate is:

$$\Delta = \mathbf{V}' \cdot \mathbf{d}_3$$

Appendix

• The mass consevation gives us, being $A = \pi a^2$:

$$\frac{DA}{Dt} = -A\Delta$$

We can define the rotation rate around the directions d1 and d2:

$$\omega_1 = -\mathbf{V}' \cdot \mathbf{d}_2$$
$$\omega_2 = \mathbf{V}' \cdot \mathbf{d}_1$$

Appendix

 We can define the forces N and the momentum vector of the flexion and rotation of the fluid, M:

$$\mathbf{N} \equiv N_i \mathbf{d}_i = \int \boldsymbol{\sigma} \cdot \mathbf{d}_3 \, dA$$
$$\mathbf{M} \equiv M_i \mathbf{d}_i = \int \mathbf{y} \times (\boldsymbol{\sigma} \cdot \mathbf{d}_3) dA$$

• Where σ is the stress tensor and the integration is made though a section.

Problem 13: Honey coils

Appendix

Linear momentum consevation:

$$\rho A \frac{D\mathbf{V}}{Dt} = \mathbf{N}' + \rho A \mathbf{g}$$

Angular momentum conservation:

$$0 = \mathbf{M}' + \mathbf{d}_3 \times \mathbf{N}$$
.

Problem 13: Honey coils

Mathematical analysis

 Imposing the Newtonian fluid condition, we need a relating condition for the dynamic variables with the kinectic, and this analysis gives us: (Ribe et al.2006)

Problem 13: Honey coils

Appendix

$$N_3 = 3\eta A\Delta$$

$$M_1 = 3\eta I\omega' \cdot \mathbf{d}_1$$

$$M_2 = 3\eta I\omega' \cdot \mathbf{d}_2$$

$$M_3 = 2\eta I\omega' \cdot \mathbf{d}_3$$

Where η is the dynamic viscosity, ω is defined as $\omega = \omega' d$ and $I = (\pi a^4)/4$

Appendix

Acceleration term in the global balance of forces:

$$\frac{D\mathbf{V}}{Dt} = U(U\mathbf{d}_3)' + 2\Omega U\mathbf{e}_3 \times \mathbf{d}_3 + \Omega^2 \mathbf{e}_3 \times (\mathbf{e}_3 \times \mathbf{x})$$

- First term: referential rotating with the fluid
- Second term: Coriolis
- Third term: centrifugal acceleration

Boundary conditions

- Boundary condition:
 - We impose the initial conditions of the problem
 - At first, the fluid doesn't rotate and it's vertical
 - We consider that the fluid rotates in the base with defined angular velocity Ω .
 - Imposing we know the fluid's movement in its base (known anguar velocity, coil radius, the derivatives, the filet orientation and its derivatives)

- From our previous expressions, we can do a equation system and we can relate the wanted parameters.
- For such procedure, we need a numerical analysis.
- The radius and frequency approximations come from this system of equations.

Problem 13: Honey coils

Appendix

• From the presented formulas, we can obtain, from a numerical solution of the equation system, a graph of frequency x height, already presented.

Problem 13: Honey coils

- **B- Capillary instabilities**
- S- Stagnation
- C- Coil formation
- F- Flexion rotation

Appendix

- We can define the forces of each phenomena:
 - Viscous:

$$F_V \sim \rho \nu a_1^4 U_1 R^{-4}$$

Gravitational:

$$F_G \sim \rho g a_1^2$$

Inertial:

$$F_I \sim \rho a_1^2 U_1^2 R^{-1}$$

Appendix

Viscous regime:

$$(F_V \gg F_G \approx F_I)$$

Gravitational regime:

$$(F_G \approx F_V \gg F_I)$$

Inertial regime:

$$(F_I \approx F_V \gg F_G)$$

Problem 13: Honey coils

- Viscous regime:
 - Viscous force:
 - F≈10¹ dyne
 - Gravitational force:
 - F≈10⁻³ dyne
 - Inertial force:
 - F≈10⁻³ dyne

Problem 13: Honey coils

- Gravitational regime:
 - Viscous force:
 - F≈10⁻² dyne
 - Gravitational force:
 - F≈10⁻² dyne
 - Inertial force:
 - F≈ 10 ⁻⁴ dyne

Problem 13: Honey coils

- Inertial regime:
 - Viscous force:
 - F≈10⁻¹ dyne
 - Gravitational force:
 - F≈10⁻⁷ dyne
 - Inertial force:
 - F≈10⁻¹ dyne

Problem 13: Honey coils

• $1 \text{ dy} = 10^{-5} \text{N}$

Sewing machine

 A thin thread of viscous fluid falling onto a moving belt generates a surprising variety of patterns depending on the belt speed, fall height, flow rate, and fluid properties

1 cm

Experimental setup – Honey and water

Cup with water
Honey
Syringe
Tripod
Pneumatic piston

Fluid variation

- We can use another surrounding medium, such as water.
- We get some interesting phenomena:

Problem 13: Honey coils

Motion seen from above

Problem 13: Honey coils

Instabilities

Surface tension:

Experimental

Rayleigh-Plateau instabilities

Instabilities study

- In the inertial-gravitational regime, we have resonant forces, causing the phenomena to be time-dependent.
- We studied this resonance:

Problem 13: Honey coils

Gravitational regime - Honey, 2000 cst

Data analysis

Viscous regime

Gravitational regime

Inertial gravitational regime

Inertial regime

Instabilities

Fall height	Flow velocity	Angular frequency	δ parameter	Theoretical angular frequency	Error
4 cm	30 cm/s	45 Hz	0.93 cm	39 Hz	15.3 %

Increasing tendency

Inertial gravitational regime - Honey, 2000 cst

Inertial regime - Honey, 2000 cst

Gravitational regime – Silicone oil, 5000 cst

Inertial-gravitational regime – Silicone oil, 5000 cst

Inertial regime – Silicone oil, 5000 cst

Problem 13: Honey coils

Viscous regime – Honey, 2000 cst

Viscous regime

Fall height	Angular frequency	Flow velocity	Theoretical angular frequency	Error
1.0 cm	25 Hz	25 m/s	27 Hz	7.4 %

Gravitational regime

Inertial gravitational regime

Inertial regime

Instabilities

Fall height	Flow velocity	Angular frequency	δ parameter	Theoretical angular frequency	Error
4 cm	30 cm/s	45 Hz	0.93 cm	39 Hz	15.3 %

Angular frequency	Fall height	$a_{\scriptscriptstyle 1}$ parameter	Theoretical angular frequency	Error
140 Hz	8.0 cm	0.2	148 Hz	5.1 %

Tensions and torsions: video and images

Navier-Stokes equations

 In a general way, we can apply the Navier-Stokes equation, given by:

$$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = -\nabla p + \nabla \cdot \mathbf{T} + \mathbf{f}$$
 Density of force per unit of mass Density
Pressure Stress tensor

And for non-compressible Newtonian-fluids, we have:

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \mu \nabla^2 \mathbf{v} + \mathbf{f}$$

How to get the data

