Team of Brazil

Problem 8 Jet and film

reporter: Liara Guinsberg

Problem 8

A thin liquid jet impacts on a soap film. Depending on relevant parameters, the jet can either penetrate through the film or merge with it, producing interesting shapes. Explain and investigate this interaction and the resulting shapes.

Examples of the phenomena

Team of Brazil: Liara Guinsberg, Amanda Marciano, Denise Christovam, Gabriel Demetrius, Vtor Melo Rebelo Reporter: Liara Guinsberg

Taiwan, 24th – 31th July, 2013 **3**

Introduction

Theoretical formulation

- Weber number
- Optical analogy
- Fluid properties
 - Capillarity
 - Viscosity
- Kaye effect

Experiments

- Experimental set up
- Materials
- Analysis of the data

Comparison between the theory and the experiments

Weber number

- It's a non-dimensional number
- It's mainly used in the study of interfaces between fluids

$$W_e = \frac{\rho v^2 l}{\gamma}$$

• It's a very important parameter in our problem.

Capillarity

- It's the ability of a fluid to flow in narrow spaces.
- It's caused by the combination of the adhesive and cohesive forces inside the liquid and between the surrounding solid and the fluid molecules, respectively.
- We can see it's effect on the interface between the jet and the film

Surface tension

- The boundary molecules have a higher energy.
- The number of higher energy molecules must be minimized.
- Minimizing the quantity of boundary molecules we minimize surface area.

Example in the phenomena

Taiwan, 24th – 31th July, 2013

Plateau-Rayleigh instability

• The surface tension causes some oscillations in the jet, sometimes breaking it into droplets, to minimize surface area.

00000E3 MCS

© 2007 Lars Röntzsch

Team of Brazil: Liara Guinsberg, Amanda Marciano, Denise Christovam, Gabriel Demetrius, Vtor Melo Rebelo Reporter: Liara Guinsberg

Dynamics of a soap film

- A thin layer of water gets stuck between the anphiphilic molocules
- The stability is given by the surface tension

Phases

- First, we can divide the problem in distinct three phases:
 - Refraction
 - Jump
 - Absortion

Refraction

- High Weber numbers
- Small incidence angles
- Condition of total wetting

Fluid diagram

Taiwan, 24th – 31th July, 2013 **14**

Absortion phase formulaion

• After some algebraic work, we can find the refraction index coefficient, depending on the Weber number:

 $F_R \sim 4\pi\gamma R_i$ Membrane union

 $\frac{\sin \theta_i \sim \theta_i}{\theta_i \ll 1}$

 $\sin \theta_r \sim n \theta_i$ Refraction condition

$$n = \frac{W_e - 1}{W_e - 5}$$

Jump

- It's the known Kaye effect
- It's hard to quantify
- The membranes don't join
- There's shear tinning, the diminution of the viscosity with the applied stress.

Jump formation

Jump analysis

Optics analogy

• By optics analogy, we can define a limit angle, when the refraction angle would be 90° and the total reflection happens.

Formulation

• For the transition, we can still use the same formulation for the refraction index:

Absortion

- Low weber Weber
- Higher angles

• Capillary forces > Normal forces

Photo from under the film

Formulation

$$\lambda = \frac{2\pi}{\tilde{f}} R_i (W_e - 1) \cos \theta_i$$

Team of Brazil: Liara Guinsberg, Amanda Marciano, Denise Christovam, Gabriel Demetrius, Vtor Melo Rebelo Reporter: Liara Guinsberg

Membrane dynamics

Von Karman's Vortex

Team of Brazil: Liara Guinsberg, Amanda Marciano, Denise Christovam, Gabriel Demetrius, Vtor Melo Rebelo Reporter: Liara Guinsberg

Experimental analyzis

- Materials
 - Needles
 - 0.30mm, 0.40mm,
 0.45mm, 0.75mm.
 - Detergent solution
 - Hoop for the film
 - Camera

Data

- We used Video Point to get the angles and the lambda values
- We plotted the graphs using Excel

Variations

Needle radius	Jet velocity	Percentage of detergent in solution
0.30 mm	0.7 m/s	5%
0.38 mm	1.1 m/s	10%
0.45 mm	1.5 m/s	15%
1.10 mm	7 m/s	

Refraction

Graph – 0.30 mm

Graph – 0.38 mm

Graph – 0.45 mm

Transition between refraction and jet

Slow motion: 0.5 of real velocity

Comparison

Refraction	Needle radius	Experimental data $n = \frac{1}{\sin \theta_i}$	Theoretical predictions $n = \frac{W_e - 1}{W_e - 5}$	Error
Diameter variation	0.30 mm	n = 1.24	n = 1.30	5.1%
Transition	0.38 mm	n = 1.16	n = 1.20	3.7%
Jump	0.45 mm	n = 1.15	n = 1.09	5.2%
Absortion	1.10 mm	n = 1.28	n = 1.20	6.2%

Absortion regime

Graphs

Velocity variation

Conclusion

• We divided our problem in 3 phases, depending on the angle of incidence of the jet.

Conclusion

• The fluid's velocity and needle's diameter are very relevant parameters for the regimes:

Conclusion

 We can study the problem in a quantitative way, predicting the refraction index and the parameter dependency of each regime.

Needle radius	Experimental data	Theoretical predictions	Error
0.30 mm	n = 1.24	n = 1.30	5.1%
0.38 mm	n = 1.16	n = 1.20	3.7%
0.45 mm	n = 1.15	n = 1.09	5.2%
1.10 mm	n = 1.28	n = 1.20	6.2%

References

- Geoffroy Kirstetter, Christophe Raufaste, and Franck Celestini. Jet impact on a soap film. Phys. Rev. E 86, 3, 036303 (2012)
- Stable Kaye effect on a thin soap film (Devaraj van der Meer, Univ. of Twente)

Theoretical formulation

- Weber number
- Capillarity
- Dynamics of a soap film
- Optic analogy
- Surface tension
- Kaye effect

Kaye effect

- The Kaye Effect is a property of complex liquids which was first described by the British engineer Alan Kaye in 1963.^[1]
- While pouring one viscous mixture of an <u>organic liquid</u> onto a surface, the surface suddenly spouted an upcoming jet of liquid which merged with the downgoing one.
- This phenomenon has since been discovered to be common in all <u>shear-thinning</u> liquids (liquids which thin under <u>shear stress</u>). Common household liquids with this property are liquid hand soaps, shampoos and non-drip paint. The effect usually goes unnoticed, however, because it seldom lasts more than about 300 milliseconds. The effect can be sustained by pouring the liquid onto a slanted surface, preventing the outgoing jet from intersecting the downward one (which tends to end the effect).
- It is thought to occur when the downgoing stream "slips" off the pile it is forming, and due to a thin layer of shearthinned liquid acting as a lubricant, does not combine with the pile. When the slipping stream reaches a dimple in the pile, it will shoot off it like a ramp, creating the effect.
- The Kaye Effect is a property of complex liquids which was first described by the <u>British</u> engineer <u>Alan Kaye</u> in 1963.^[1]
- While pouring one viscous mixture of an <u>organic liquid</u> onto a surface, the surface suddenly spouted an upcoming jet of liquid which merged with the downgoing one.
- This phenomenon has since been discovered to be common in all <u>shear-thinning</u> liquids (liquids which thin under <u>shear stress</u>). Common household liquids with this property are liquid hand soaps, shampoos and non-drip paint. The effect usually goes unnoticed, however, because it seldom lasts more than about 300 milliseconds. The effect can be sustained by pouring the liquid onto a slanted surface, preventing the outgoing jet from intersecting the downward one (which tends to end the effect).
- It is thought to occur when the downgoing stream "slips" off the pile it is forming, and due to a thin layer of shearthinned liquid acting as a lubricant, does not combine with the pile. When the slipping stream reaches a dimple in the pile, it will shoot off it like a ramp, creating the effect.

Shear thinning

- Shear thinning is an effect where a fluid's viscosity—the measure of a fluid's resistance to flow—decreases with an increasing rate of shear stress. Another name for a shear thinning fluid is a pseudoplastic. This property is found in certain complex solutions, such as lava, ketchup, whipped cream, blood, paint, and nail polish. It is also a common property of polymer solutions and molten polymers. Pseudoplasticity can be demonstrated by the manner in which squeezing a bottle of ketchup, a Bingham plastic, causes the contents to undergo a change in viscosity. The force causes it to go from being thick like honey to flowing like water. The study of such phenomena is called rheology.
- All materials that are shear thinning are <u>thixotropic</u>, in that they will always take a finite time to bring about the rearrangements needed in the microstructural elements that result in shear thinning.

How to measure the fluid velocity at the needle

- Film the syringe with the fluid
- Analyze the video in video point
- Calculate the velocity by the approximation:

$$R_i^2 \cdot v_i = R_f^2 \cdot v_f$$

Chart

Kaye effect

- It's caused by the shearthinning behavior of some non Newtonian fluids
- There's a thin air layer between the two fluids

Scheme

Gráficos

• Refração

Team of Brazil: Liara Guinsberg, Amanda Marciano, Denise Christovam, Gabriel Demetrius, Vtor Melo Rebelo Reporter: Liara Guinsberg

Materials

- Detergent solution(5%)
 - $\gamma = 26.2 \pm 0.2 \text{ mNm}^{-1}$
 - $\rho = 10^{3} \text{kg/m}^{3}$
 - V_i between 1m/s and 2m/s

Absortion phase formulaion

- After some algebric work: $(W_e - 1) \sin(\theta_r - \theta_i) = \frac{F_R}{\pi \gamma R_i} \sin \theta_r$
- We can do some approximations:

 $F_R \sim 4\pi \gamma R_i$ Membrane union $\frac{\sin \theta_i \sim \theta_i}{\theta_i \ll 1}$

 $\sin \theta_r \sim n \theta_i$ Refraction condition

$$n = \frac{W_e - 1}{W_e - 5}$$

Formulation

• Mass consevation:

$$D = \pi R_i^2 V_r = \pi R_r^2 V_r$$

• Decomposition of the forces acting on the film:

 $D(\rho V_r \sin \theta_r - \rho V_i \sin \theta_i) = \pi \gamma (R_r \sin \theta_r - R_i \sin \theta_i)$ $D(\rho V_r \cos \theta_r - \rho V_i \cos \theta_i) = \pi \gamma (R_r \cos \theta_r - R_i \cos \theta_i) - F_r$

Formulation

Fluid diagram

Effect of very low velocity of the jet

• Refraction R = 0.18mm

W_e = 209.42 V_i = 5.5 m/s n = 1.1

Errors

Fluid diagram

Von Karman's vortex

- In fluid dynamics, a Kármán vortex street (or a von Kármán vortex sheet) is a repeating pattern of swirling vortices caused by the unsteady separation of flow of a fluid around blunt bodies.
- A vortex street will only form at a certain range of flow velocities, specified by a range of Reynolds numbers (*Re*), typically above a limiting *Re* value of about 90. The Reynolds number is a measure of the ratio of inertial to viscous forces in the flow of a fluid and may be defined as:

$$\mathrm{Re} = rac{Vd}{
u}$$

And for our experiments:
 $R_e = 1.1 * 0.45 * rac{10^{-3}}{1.004 * 10^{-6}}$

$$R_e = 493.02$$

