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Task

A chain of similar pendula is mounted equidistantly 
along a horizontal axis, with adjacent pendula being 
connected with light strings. Each pendulum can 
rotate about the axis but can not move sideways 
(see figure). 

 Investigate the propagation of a deflection 
along such a chain. 

 What is the speed for a solitary wave, when 
each pendulum undergoes an entire 360º 
revolution?
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Terms & Definitions
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All strings are straightened equally
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Chain of pendula

7
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Which speed?

8

Group velocity

Phase velocity

 Velocity of overall shape
 Velocity of the information

k
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
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k

groupv

 Velocity of phase
 Can be higher than 

velocity of information or 
even has different direction

Angular frequency

Wave number

k
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Dispersion

10

 Property of a given system Group velocity is wavelength depended
k

vgroup
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Dispersion

12

 Property of a given system Group velocity is wavelength depended
k

vgroup
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
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Breakdown of wave

Wavefront
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What is solitary wave?

13

Place of first observed solitary wave 
(soliton) (Union Canal, Scotland)

Photo from Physics of solitons. M. Peyrard, T. Dauxios, Cambridge University Press (2010), 
ISBN 9780521143608

Solitary wave (Soliton) 
on pendula chain

 What is the speed for a solitary wave, when each pendulum undergoes  
an entire 360º revolution?



13

Soliton (Solitary wave)

 Wave which maintains its shape and moves at 
constant speed

 Dispersion is balanced by nonlinear effects 

 Nonlinear wave 

(Principle of )

 Behaves Localized)

14

 Different shapes, sizes and velocities

)()()( baba fff 

https://en.wikipedia.org/wiki/File:Soliton_hydro.jpg
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PHYSICS OF CHAIN OF PENDULA
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What is going on?

16

Example of Chain behavior (280 fps)

First pendulum is rotated

Energy is stored to the 
deformation of springs 

1st pendulum undergoes 360°

Kinetic energy is transferred 
along chain by springs

Gravity returns pendula to the 
static state

Reflection on Free end 

Are you satisfied with this 
explanation?

We are .
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Chain of pendula: Parameters

17
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Equation of motion

18
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Chain of pendula: Equation of motion
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For discrete system

From Torque analysis or Using principle of least action 
(Derivation in appendices)

Continuous approximation to 1st order: 
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Analytic approach

20
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Terms of standard
wave equation

Nonlinear term
Makes interesting

phenomena

Continuous system Sine Gordon Equation 

Predictions of continuous model (Sine-Gordon equation):

Initial deflections << 360° Initial 360° deflection

Dispersion caused 
by gravity

Dispersion is 
balanced by 
nonlinearity



13

Discrete model: Numerical approach

21

Using Runge-Kutta
4th Order method 

Without friction:

With kinetic friction:
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Relations

22

Continuous model
(Sine-Gordon equation)

Discrete model
(Numerical simulation)

Experiment

?
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PROPAGATION OF DEFLECTION

Small deflections

(<<360°)
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Example of behaviour (<360°)

24

Initial 110° deflection

Initial Profile

Dispersion
Extension of profile

along chain

Dissipation
Due to Kinetic Friction
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Dispersion result from analytical approach

25

 Property of a system Group velocity is wavelength depended

Dispersion law for our system (Derivation in appendices)
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Relations

26

Continuous model
(Sine-Gordon equation)

Without friction

Discrete model
(Numerical simulation)

Experiment
Friction
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Simulation of discrete system without friction

27
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Analytical approach/Discrete model

28
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Relations
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Continuous model
(Sine-Gordon equation)

Without friction

Discrete model
(Numerical simulation)

Experiment
Friction
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Relations
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Continuous model
(Sine-Gordon equation)

Without friction

Discrete model
(Numerical simulation)

Experiment
Friction
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Comparison

31

Initial 110° deflection

Experiment

Numerical simulation with friction
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Group velocity / Initial angle of 1st pendulum
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Relations
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Continuous model
(Sine-Gordon equation)

Without friction

Discrete model
(Numerical simulation)

Experiment
Friction

?
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Relations

34

Continuous model
(Sine-Gordon equation)

Without friction

Discrete model
(Numerical simulation)

Experiment
Friction

Friction cannot be 
included
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SOLITON

Entire 360 revolution

Propagation of deflection

Group velocity
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What does Sine-Gordon eq. say ?
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[1] Physics of solitons. M. Peyrard, T. Dauxios, Cambridge University Press (2010)
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Interesting properties
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𝑣 =
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Interesting properties
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Interesting properties
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Interesting properties
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v


Dispersion law for small deflections

Interesting properties
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v


Dispersion law for small deflections

Interesting properties
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v


Dispersion law for small deflections

Interesting properties
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Wavefront (small wavelengths) is always faster than soliton
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Relations
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Continuous model
(Sine-Gordon equation)

Without friction

Discrete model
(Numerical simulation)

Experiment
Friction
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Simulation of discrete system without friction

45

Maintains its shape and moves 
at constant speed

Soliton
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Group velocity / Initial angular freq.
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Group velocity / Initial angular freq.
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Relations
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Continuous model
(Sine-Gordon equation)

Without friction

Discrete model
(Numerical simulation)

Experiment
Friction

?
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Group velocity / Initial angular freq.
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Group velocity / Initial angular freq.
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Relations
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Continuous model
(Sine-Gordon equation)

Without friction

Discrete model
(Numerical simulation)

Experiment
Friction

Friction cannot be 
included

?
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Experiment
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Comparison
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Group velocity / Initial angular frequency
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Relations
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SUMMARY
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Conclusion
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 Analysis of the system & Equation of motion
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Conclusion
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 Small deflections (<< 360°)
Continuous model

(Sine-Gordon equation)
Without friction

Discrete model
(Numerical simulation)

Experiment
Friction

Friction cannot be 
included

 Soliton
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 Soliton

v



Dispersion law for small deflections

Group velocity converges to maximal value

v

initial

Wavefront (small wavelengths) is always 
faster than soliton

ConclusionThank you for your attention!
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APPENDICES
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Energy in springs

60

Looking from reference frame
connected with previous pendulum
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Energy in springs
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Looking from reference frame
connected with previous pendulum

1 ii 

onprestressiF

onprestressiF

?F

View from above:

a

l

onprestressiF

a

?Fx

)tan( 1 iilx 

a

x
tan



  















 1? tanarctansin iionprestressi

a

l
FF 



13

Energy in springs
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Looking from reference frame
connected with previous pendulum
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Energy in springs

63

Looking from reference frame
connected with previous pendulum
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Why prestression?

64

Usual spring Prestressed spring 
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Why prestression?
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-Gordon 
equation

(Proved analytically & numerically)

Sine-Gordon eq.
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Error in 3rd order  found irrelevant by 4th order Runge-Kutta

Prestression is needed, elasticity is not important
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Derivation of equation of motion

66

Using Principle of least action (Euler-Lagrange equation)
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Continuous limit: Derivation 

67

Using Equation of motion
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known analytical solution [1]

Small difference in angle of adjacent 
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[1] Physics of solitons. M. Peyrard, T. Dauxios, Cambridge University Press (2010)
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Chain of pendula: Equation of motion
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Friction

69
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Simulation (4th Order Runge-Kutta)

70

Simulating equation of motion for every pendulum
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Using 4th order Runge-Kutta method:
 More precise (With comparison to

Euler method)

 Faster (Higher time step is 
sufficient to achieve the  

same accurancy)
 Problem is about nonlinearity

1st order method was unstable

How it works:

State of system 
in t

State of system 
in t+0.5 t

Velocity k1 State of system 
in t+0.5 t

Velocity k2 Velocity k3

State of 
system in t+ t

Velocity k4

State of 
system in t

State of system in
t+ t

Average velocity (k1+2k2+2k3+k4)/6
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Dispersion: Derivation

71

0sin2

02

2
2

2

2

0














x
c

t
02

02

2
2

2

2

0














x
c

t

 sin

Assuming wave in form:
)(

),(

kxti

tx Ae  

Taking into the limit of Sine-Gordon equation:

0)(2

0

)(22

0

)(2   kxtikxtikxti AeAekcAe  

22

0

2

0 kc 

aIFlImgl

aFl

c

c

kc

kc

k
v

t

group
22

2

2

0

22

0

2

2

0

22

0

2

0

2

0 2

4

2





























13

Derivation: Group velocity of Soliton
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 Angular velocity at maximum point
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Analogy

73

 Analogy to Special Theory of Relativity Contraction of length
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 Typical length of soliton decreases with increasing group velocity
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Two theoretical limits
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 Limit of maximal group velocity  - maximal information speed
groupv

0cvgroup initial

 Consequence of contraction in discrete system
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initial
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

(Derivation in appendices)

Only small oscillation observable

1100  radsinitial

a

Actually never in our world (Speed of light)
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Two theoretical limits

75

 Limit of maximal group velocity  - maximal information speed
groupv

0cvgroup initial

Experimental limit Disruption of spring

 Consequence of contraction in discrete system
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(Derivation in appendices)

Only small oscillation observable

1100  radsinitial

a

Actually never in our world (Speed of light)
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Energy in springs >> Gravitational energy



13

77

W
it

h
o

u
t 

g
ra

vi
ty

W
it

h
 g

ra
vi

ty

Small deflection 360° deflection

Stable profile Large wave moving along chain

SolitonDispersion of initial profile

Fr
ic

ti
o

n
W

it
h

o
u

t 
fr

ic
ti

o
n

Fr
ic

ti
o

n
W

it
h

o
u

t 
fr

ic
ti

o
n

Dispersion & Dissipation
of initial profile

Dissipation of Soliton

Dissipation of 
Stable profile

Dissipation of
Large wave moving along chain


