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Task

A chain of similar pendula is mounted equidistantly
along a horizontal axis, with adjacent pendula being
connected with light strings. Each pendulum can
rotate about the axis but can not move sideways
(see figure).

= |nvestigate the propagation of a deflection
along such a chain.

= What is the speed for a solitary wave, when
each pendulum undergoes an entire 360°
revolution?
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Terms & Definitions

A chain of similar pendula is mounted equidistantly ™
along a horizontal axis, with adjacent pendula being
connected with light strings. Each pendulum can

rotate about the axis but can not move sideways
(see figure).
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Terms & Definitions

A chain of similar pendula is mounted equidistantly
along a horizontal axis, with adjacent pendula being
connected with light strings. Each pendulum can

rotate about the axis but can not move sideways
(see figure).
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Chain of pendula
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Which speed?

Group velocity

= Velocity of overall shape

= Velocity of the information (0 Angular frequency

Wave number

o

Phase velocity 0y

05}

= Velocity of phase

= Can be higher than
velocity of information or g5t
even has different direction
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Which speed?

Group velocity

= Velocity of overall shape

= Velocity of the information (0 Angular frequency

Wave number
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= Property of a given system - Group velocity is wavelength depended V = —
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Dispersion

_ Ow
group — &

= Property of a given system - Group velocity is wavelength depended V

Breakdown of wave
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What Is solitary wave?

» What is the speed for a solitary wave, when each pendulum undergoes
an entire 360° revolution?

Place of first observed solitary wave
(soliton) (Union Canal, Scotland)
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Photo from Physics of solitons. M. Peyrard, T. Dauxios, Cambridge University Press (2010),
ISBN 9780521143608

Solitary wave (Soliton)
on pendula chain
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Soliton (Solitary wave)

= Wave which maintains its shape and moves at
constant speed

= Dispersion is balanced by nonlinear effects

: Nc?nll_near wave f . # fo+ T
(PrInCIpIe Of SuperPOSition doesn’t hOId) https://en.wikipedia.org/wiki/File:Soliton_hydro.jpg

Behaves like “particle” (Localized)

Different shapes, sizes and velocities




PHYSICS OF CHAIN OF PENDULA




What is going on?

First pendulum is rotated

Energy is stored to the
deformation of springs

-- T — -

Are you satisfied with this

explanation?
We aren'’t. Rl .

1st pendulum undergoes 360°

Kinetic energy is transferred
along chain by springs

Gravity returns pendula to the
static state

' Reflection on Free end
Example of Chain behavior (280 fps) erlecu
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Chain of pendula: Parameters

a=0.047m

| =0.34m
|, =0.13m
F=3.7N
m = 0.514kg
m, | | =0.004875kgm?
a Spacing between pendula F String force of prestression
| Length of pendulum M Mass of pendulum

|t Position of centre of mass | Moment of inertia around bar
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Equation of motion
Kinetic energy T = ZN:% |6';i2

Potential energy U, = Z mgl, (1-cos(8,))

(Gravity)
Potential energy 11 FI?
(Springs) s E?(e ‘9|+1)

i=1

Using Principle of least action

L=T-U g _Us (Equivalent to the Force approach)
dfoL) oL
dtl 06, ) o6,
. FI? mgl
0, = (9|1+H _2‘9i)_ =

la e n
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Chain of pendula: Equation of motion

For discrete system

_Fr° Lol mgl,

~ 6, +6., —26)-

From Torque analysis or Using principle of least action
(Derivation in appendices)

Continuous approximation to 15t order:

Using Taylor expansion: , a 2 9 a 2 H
(9i+1+‘9i—1_2‘9i)za22—f _2_C _+a)0 Sln(9 O
_______________________________________________ ot OX’

Fl2a Sine-Gordon equation
Co = | Maximal possible information speed Known analytical solution
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Analytic approach

Continuous system - Sine Gordon Equation

—1C0=[H]
2 2 c-.sé
6 6 2 a 9 2 = 0.1; |r||
——C; —5+wysinf@=0 |
at 6X % -::-.-::-é —— LI --------- Dosition [m]
_.:._1; 2 | | 6 g 10
Nonlinear term - |
Terms of stanc_lard Makes interesting o3} J \
wave equation
phenomena

Predictions of continuous model (Sine-Gordon equation):

Initial deflections << 360° Initial 360° deflection

A

Dispersion caused
by gravity

od

Dispersion is
balanced by
nonlinearity
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Discrete model: Numerical approach

¥ soliton Simulation

Using Runge-Kutta MM

4t Order method

Farams tsrs System
Flmsmt | M [an Spacing |u.uu m Time ; 4,3214 =
[ ] Lengthof am [a34  m Stifireze [T ka2 Kinatic Erargy : 13,454 J
e POOIllIDn ‘.ﬂ Ch: |n,17 m ) 1= |3'DD (=L Fotential Energy : 20744 )
4| Momant of inartis CH:  [0,004875 kgm™2 dt= [ogoot  ® Energy in eprings ; 1.6653.)
Mazz of pendulam: [ 54 ke RHEHGHINTR Giroup velosity: 1.2208 m/s
ity |1— 1 Inhei radids |g_02 m
I+ Man. Indtial snals of et (547 rad

Without friction:
. FI° | .
6="""(0_,+0-26.)-sin@)
la |
With kinetic friction:

~20)

2
(06,4 -26)-"%sin(0) ~san(@) " f (m + (6, +6,

a—L
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Relations

Continuous model
(Sine-Gordon equation)

: ’ S I
Discrete model I} \\
(Numerical simulation) : |
. ; \
N \
I 1 " 1
e . I /
F= 7:_:_'_3*‘ €= ———— ‘\ V4
\\ ,/
\\-¢’,

Experiment



PROPAGATION OF DEFLECTION

Small deflections
(<<360°)
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Initial Profile

Dispersion
Extension of profile
along chain

Example of behaviour (<360°)

Dissipation
Due to Kinetic Friction

Initial 110° deflection



SLOVAKIA
I¥PT '13

Dispersion result from analytical approach

= Property of a system - Group velocity is wavelength depended

Dispersion law for our system (Derivation in appendices)

2
27
SRR+ arc

Vgroup (/1) =

Theoretical prediction for our chain of pendula
From continuous model:

25 c,=2.289ms ™
= 2
(%]
£
2 15
[&]
3
g
> 1
=)
S
© 05
0
0 1 2 3 4 5 6 7

Wavelength [m] h
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Relations

Continuous model
(Sine-Gordon equation)

Without friction
Discrete model |
(Numerical simulation)
— L

-
......................

T
Hi

Experiment
Friction



- E
Simulation of discrete system without friction
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Analytical approach/Discrete model

3
2,5
% 2
é ® Discrete Model
= ===Analytical Theory
S 15
O
B
>
S|
O
O
0,5
0
0 1 2 3 4 5 6 [

Wavelength [m] h



Relations

ot
Continuous model

(Sine-Gordon equation)
Without friction

Discrete model
(Numerical simulation)

......................

Experiment
Friction
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Relations

Continuous model
(Sine-Gordon equation)
Without friction

Discrete model
(Numerical simulation)

-
......................

T
Hi

Experiment
Friction
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Comparison Experiment

Initial 110° deflection i —_ | N

Numerical simulation with friction
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Group velocity / Initial angle of 15t pendulum

2,5

2
T
£,
> 15
=
(&)
9 s Simulation with
g friction
o .
-] 1 ® Experiment
o
O

0,5

®
0 ‘@
0 100 200 300 400

Initial angle [°] h
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Relations

Continuous model
(Sine-Gordon equation)
Without friction

Discrete model
(Numerical simulation)

-
......................

[B=3| =2 ey .

Experiment
Friction
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Relations

Continuous model
(Sine-Gordon equation)
Without friction

Discrete model
(Numerical simulation)

Friction cannot be
included

-
......................

T
Hi

Experiment
Friction
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Entire 360° revolution
Propagation of deflection
Group velocity
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What does Sine-Gordon eq. say ?

Continuous model: o

520 , 0% . /i
——C2—+aw;sind=0

ot OX o1}

Solution with our boundary conditionsl!: R 7_01_ \ s

W, = mlglt b 03} ¥
w, (X —Vvt What we actually see
0., =4ArcTan| Exp o ) y

(th) 2
vV / Fa

Still one unknown variable V - Group velocity !

Related to initial angular velocity at maximum (Derivation in appendices)

2
initial C

2 2
A + @isia

(0

V| =

[1] Physics of solitons. M. Peyrard, T. Dauxios, Cambridge University Press (2010)
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Interesting properties

2
_ Winitial
lv|= z Co

2
\ 4Wo” +Winitial

N . S
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Interesting properties

initial

>
M . Diitial c
o 2 2 0
Aoy + .
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Interesting properties

Small initial angular velocities

W, >> @ Vo~ Dinitial c,

initial
2,

Vv

2
_ Wjpitial
TNz + iy, D
0)0 a)lnltlal initial

Group velocity rises linearly
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Interesting properties

Small initial angular velocities

Wy >> Winitial V& —2'2;'&' Co
0
Y,
2
. Winitial
vI= Aw? + w? “o Wit
COO a)lnltlal initial

Group velocity rises linearly

Large initial angular velocities

W, << @
VIC
0

initial V—C

Winitial

Group velocity converges to maximal value
40
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Interesting properties

Small initial angular velocities
(£,

Wy >> Winitial Vz—zigia' Co
0
Y,
2
. Winitial
vI= Aw? + w? “o Wit
COO a)lnltlal initial

Group velocity rises linearly

Large initial angular velocities

W, << @
VIC
0

initial V—C

A WDinitial

Dispersion law for small deflections Group velocity converges to maximal value
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Interesting properties

Small initial angular velocities

Dy >> Dpia V=~ ol ¢
2,
Y,
2
M _ Winitial c
— 0
4o + Dpigia Dinitial
Group velocity rises linearly
Large initial angular velocities
V 20 \f|< Winitial vV — G
: C
The same maximump , as ’
for small deflections
‘ A Winitial

Dispersion law for small deflections Group velocity converges to maximal value
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Interesting properties

Small initial angular velocities

Wy >> Oty v~ el

2,

\Y
2
‘V‘ _ _ |n|t|al2 CO "
Group velocity rises linearly
Large initial angular velocities
V Wy << Wypitial V—>GC
V|
C0
Co |
Wavefront (small wavelengths) is always faster than soliton

Winitial

Dispersion law for small deflections Group velocity converges to maximal value
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Relations

Continuous model
(Sine-Gordon equation)

Without friction
Discrete model |
(Numerical simulation)
7.

-
......................

T
Hi

Experiment
Friction
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Simulation of discrete system without friction

Maintains its shape and moves
at constant speed

Soliton
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Group velocity / Initial angular freq.

2
-—=Simulation of Discr.
= Mod.
2 15
> —Sine-Gordon
'O
oS
2 1
o
-]
S
@)
05
0

0 20 40 60 80 100 120 140

Initial angular frequency [s7] h
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Group velocity / Initial angular freq.

0,8
2 0,7
0,6
é 1,5 .é. 05
2 oy
= =
o
© % 0.4 ===Simulation Discr.
> 1 >
o o Mod.
> > 0,3 .
o <2 «==Sine-Gordon Model
@) @)
2
05 0
0,1
0 0
0 Z 0 2 4 6 8 10

Initial angular frequency [s7]
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Relations

Continuous model
(Sine-Gordon equation)
Without friction

Discrete model
(Numerical simulation)

-
......................

T
Hi

Experiment
Friction
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Group velocity / Initial angular freq.
0,7

0,6

0,5

===Simulation Discr. Mod.

===Sine-Gordon

e Experiment

Group velocity [ms™]

]

e B

% et ¢ ++

0 2 4 6 8

Initial angular frequency [s7] h
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Group velocity / Initial angular freq.
0,7

0,6

0,5

===Simulation Discr. Mod.

Friction = e

0,3 —

e Experiment

Group velocity [ms™]

0.2 1

e B

% et ¢ ++

0 °
0) 2 4 6 8

Initial angular frequency [s7] h
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Relations

Continuous model
(Sine-Gordon equation)
Without friction

Discrete model
(Numerical simulation)

Friction cannot be
included

-
......................

T
Hi

Experiment
Friction
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Group velocity / Initial angular frequency

0,7 . S
===Simulation Discr.
Mod.
0,6 ===Sine-Gordon
F.:' 0,5 - ==Simulation Discr.
= Mod with friction
é, 0.4 e Experiment
o
ie)
203
o
>
2 ]
5 0,2
0,1
0
0 2 4 6 8

Initial angular frequency [s7] h



SLOVAKIA
I¥PT '13

Relations

Continuous model
(Sine-Gordon equation)
Without friction

Discrete model
(Numerical simulation)

Friction cannot be
included

-
......................

T
Hi

Experiment
Friction
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Conclusion

= Analysis of the system & Equation of motion

Fl?
=

7 |

9'—1 + ‘9i+1 o 20i))_ m?lt sin(Hi)

= Propagation of deflection

= Small deflections (<< 360°)

g
z 2
Dispersion & Dissipation 3 1
of profile S
5 0
0 200 400
) Initial angle [°]
= Soliton >
ﬂa 0.6
04

Stable against dispersion, l e
but not against friction ==

Group velocity [ms™]




Conclusion

= Small deflections (<< 360°)

= Soliton

Discrete model

(Numerical simulation)

-

-
----------------------

T

Experiment

Continuous model
(Sine-Gordon equation)
Without friction

Friction

SLOVAKIA
I¥PT '13

Friction cannot be
included




oms| &
Tondtugoonfor your attention!

= Small deflections (<< 360°) 27C;

V —
group
\/ Awf +4rcct

A

Dispersion law for small deflections

Wavefront (small wavelengths) is always
faster than soliton

= Soliton V >
Vyroun = Za)initialz c,
4@y + Opitia
Wipitial

Group velocity converges to maximal value
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Energy In springs

Looking from reference frame d
connected with previous pendulum

View from above:

prestression

T
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Energy In springs

Looking from reference frame d
connected with previous pendulum

View from above:

F

T

prestression

x=Itan(g, -46,,)

|
tan o = A ! prestression
d 1
| I prestressnn
F? — |:prestression Sm[arCtan(g tan (el o Hi+1 )JJ E

N . S
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Energy In springs

Looking from reference frame d
connected with previous pendulum

View from above:

F

prestression

x=Itan(6, -6,,)

-

tan o = A prestression

a

I

I

I

1
| prestression
F, = F estression sm[arctan( tan(6, — 6., )

L (6,-6,,)60(F*)

prestression (

Assuming strong spring — small 8 -6, F,=F

+
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Energy In springs

Looking from reference frame d
connected with previous pendulum

View from above:

T

prestression

2 |
E :IF?dx:jF?ld(Aé?):li(ﬁi ~0

2 7 i+1) +O((H| _0i+1) )

+
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Why prestression?
Usual spring Prestressed spring

k | |:restoring k
>
F

W“ ;
prest ession

elastlc

2
|:elastic :k(V X2+|2 _IZ) z%I(XT_FC)(XAf)
F

>
|:restori

X prestression

elastic

2
elastlc_k(\‘x +|2 I )~—k—+O(X)

prestression

3

. X X
Usual spring Frestoring = 2 Fetastic 7= k Tt O(x°)
3
Prestressed spring F o = 2(F estression T F )5 ~2F LI O(x°)

elastic | prestression | | 2
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Why prestression?
Usual spring

. Doesn'’t lead to Sine-Gordon
I:restoring +O(X ) » equation
: Pr nalytically & numericall
Prestressed spring (Proved analytically & numerically)

X 3

F 2F “lrk i(_z +0O(x°) » Sine-Gordon eq.

restoring prestression

F... ~2F X o)

restoring prestression

Error in 3'9 order found irrelevant by 4t order Runge-Kutta

) 4

Prestression is needed, elasticity is not impﬁnt
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Derivation of equation of motion

Using Principle of least action (Euler-Lagrange equation)

d(oL) oL
L=T-U,-U, =0

dt\ o6 | o0
Term from Kinetic energy: Terms from Potential energy:
gt[ggj:m e U+ )
aiei(—ug )= —mgl, sin(6.)
%(—us)z %'2(61_1 +0,,-26)
6 -0, +0.,—20)-"in(a)

la

—IL



ot
Continuous limit: Derivation

Using Equation of motion

.. FI? mal. . Small difference in angle of adjacent
b=~ (6,1+6,,-26)- " sin(@) pendul
sin(Xx) = X
2 4
626 620 (9n+1+9n—1_26i)za2%+0 a4%
F—CO a—+a)o Sln9 0 ox° ox*
X
o Fl*a
Sine-Gordon equation O
known analytical solution [1]
o _ g,
Z =

[1] Physics of solitons. M. Peyrard, T. Dauxios, Cambridge University Press (2010)
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Chain of pendula: Equation of motion

Discrete system

FI? mgl,

éi:F(‘gi—l"‘em_zgi)_ | sin(4))
2

él = _i(gl _92)_%3"1(‘91)
la I

. FI? mgl, .

b= —(0:2-0,)- Igtsm(eN)

N . S
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Friction

Pendulum cannot move just rotate

>F=0= F+F+F

spring
Normal force acting on the axis

F”:mg+549 +6_,-26)

i+1

Causes torque of friction forces

< fF,
T, =TIk, F

spring

= (0.,+6_,-20)- m,g't sin(ei)—sgn(é){f(mgf,;(

6., +60_,-26))

i+1 i+1

N . S
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Simulation (4t Order Runge-Kutta)

¥ soliton Simulation

=10] x|

Using 4" order Runge-Kutta method:
= More precise (With comparison to
Euler method)

= Faster (Higher time step is “LH MMHHWMMJ

sufficient to achieve the
same accurancy) T i r— ———

" I bl m . b tn I“ t ep Leralh ot m: 0,34 moo e [ ke atc Enarg: 13,
ropile IS abou onlineari y 2 Posbin 1 H: (57 . fme = :;::::::Wl‘a;j:‘i J

lSt d h d bI tep Morment o rwia OH: [a004g7s bom? o= [aoor s oy g 16

oraer “Iet 0d was ul ISta e Watt et pandllor [EHT ho o Fien [ o vt 1 20

Int Angular velocie: [y &1 Inner radiug |U_gg m
[ Man Iritial anals of st {017 rad

Simulating equation of motion for every pendulum
2
0= 6in(0., ~0) ~sin(6, ~6,,))~ " 5in(8) ~sgn(@) T f (mg + - (5in(6,, ~6) ~sin(8, - ,.,))

O
How it works: Velocity k, Velocity k,
Velocity k; | State of system State of system 3 State of
/ in t+0.5At > in t+0.54t system in t+At
State of system
y Velocity k, K

int
Average velocity (k,+2k,+2k,+k,)/6

State of
systemint >

State of system in
t+At
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Dispersion: Derivation
520 pe sinf ~ 6

— —C. —+a@ysind=0 21 wi0=0

ot> " ox
Assuming wave in form: 0, ) = Ag' (@)

Taking into the limit of Sine-Gordon equation:

_ % Agi (@) +C§k2Aei(a)t+kx) + a)gAei(a)Hkx) ~0

® = i\/a)g +cok?

Ow cok 27C; 27F1°a

Viroup = = B -
Tk Jw?+ ek [ Ref +axic | 2’mgl] + IFIa

N . S
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Derivation: Group velocity of Soliton

= Angular velocity at maximum point

0O 1)

Wjnitial — ot

x=0,t=0

2
w* (86(’(‘)) =V (—89(“)} Z=X-—Vvt 6,,=4ArcTan Exp Dy (X V1)

nitial 61: az CO 1 \/2
C0
00, .\ 2 _
(ﬁj —4 D _sech?| QX VD Sech(0) =1
0z X Vv v°
CO 1__2 CO 1_—2
ok %
2
M winitial c
0
4600 + wmltlal

N . S
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Analogy

= Typical length of soliton decreases with increasing g\roup velocity

O, =4ArcTan

= Analogy to Special Theory of Relativity - Contraction of length

vie= + 0.
¥lm]
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Two theoretical limits

= Limit of maximal group velocity - maximal information speedy,

group
Wjnitial —” X Vgroup =Gy
Actually never in our world (Speed of light)
= “Invisibility” - Consequence of contraction in discrete system
If the “length of soliton” is much smaller than @
FI?
7 - mgl r\ Only small oscillation observable
Dinitial >> l

I |
(Derivation in appendices) \1|

... =100 rads |

L 2
L 3

®-
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Two theoretical limits

= Limit of maximal group velocity - maximal information speedy,

group
Wjnitial —” X Vgroup =Gy
Actually never in our world (Speed of light)
Experimental limit — Disrup f sprin
= “Invisibility” - Consequence of contraction in discrete system
If the “length of soliton” is much smaller than @
FI?
? — mglt '\l Only small oscillation observable
Dinitial > |

(Derivation in appendices)

'|
w, ... ~100 rads™ 1

L 2
L 2
L 3
®»-

®»-
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“Invisibility”

If the “length of soliton” is much smaller than @

2
‘V‘ — _ |n|t|al2 C
C, Ay + Ojigia
L<<a — 1-— <<a
@, Fl*a
mgl 2
=0 =
| I
F 2
gI —mgl,
F2 Dypitial =~ |
What if —— < mg]t
3 Thgn Continuous approach cannot be used
2
= It requires L, = Lo >> &hat means —>> mglt
a

0 Energy in springs >> Gravitational energy

N . S



Ultimate answer to all: "What if?”
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360° deflection

Small deflection

5
> |
=) = . . .
s | Stable profile Large wave moving along chain
S £
= =
o
o |
= .
= 5 Dissipation of Dissipation of
£ Stable profile Large wave moving along chain
2 § Dispersion of initial profile Soliton
s £
S
£
=2
=

Dispersion & Dissipation

- ! Dissipation of Soliton
of initial profile

Friction




