

3

Twisted Rope

Matej Badin

Problem

Hold a rope and twist one end of it.

At some point the rope will form a **helix or a loop.**

Investigate and explain the phenomenon.

Apparatus

Rope suspension -holder

Handle

("Twist one end of it")

Weight

(Changeable tension)

 Loops/helices are formed

Why does it occur?

Energetically favorable state.

Potential energy rises upon deformation:

- Torsional deformation

Energetically favorable state.

Potential energy rises upon deformation:

- Torsional deformation
- Bending (loops)

Energetically favorable state.

Potential energy rises upon deformation:

- Torsional deformation
- Bending (loops)
- Potential of tension force
 (Modeled by gravity force of weight)

Energetically favorable state.

Potential energy rises

upon deformation:
How to achieve the minimal energy?

Torsional deformation

Bending (loops)

 Potential of tension force (Modeled by gravity force of weight)

Existing theoretical model

Euler-Kirchhoff's equations (Force and torque equilibrium)

$$EI\dot{\kappa_1} + (C - EI)\kappa_2\tau = F \cdot e_{\eta}$$

$$EI\dot{\kappa_2} + (EI - C)\kappa_1\tau = -F \cdot e_{\varepsilon}$$

$$C\dot{\tau} = 0$$

Limitations & Drawbacks:

- Works only for ideal rods
- Several solutions with different energy
- No general analytical solutions is known
 - → Solutions only for simple cases
 - → Numerical modeling

Existing theoretical model

Euler-Kirchhoff's equations (Force and torque equilibrium)

$$EI\dot{\kappa_1} + (C - EI)\kappa_2\tau = F \cdot e_{\eta}$$

$$EI\dot{\kappa_2} + (EI - C)\kappa_1\tau = -F \cdot e_{\varepsilon}$$

Our approach:

Limitation simple qualitative model

- Works only for ideal rods
- Several solutions with different energy
- No general analytical solutions is known
 - → Solutions only for simple cases
 - → Numerical modeling

Energy of the rope

Twist angle

 $E_T(\varphi)$: Rises faster than linearly

Number of loops

Loops are similar:

Constant

energy increment

\(\rightarrow \Delta E_L \) per loop

Energy of the rope

Twist angle

ises faster inearly

ire similar: **nstant**

energy increment

≥ ΔE_I, per loop

$$F_s \Delta s = mg \Delta h$$

EBending

Twist or loop?

Energy in twisting

Energy

 $\Delta E pprox 2\pi rac{dE_T}{darphi}$

Number of twists
$$\frac{\varphi}{2\pi}$$

1 turn

Twist or loop?

Energy in twisting

Energy

2nd option - Loop ΔE_L $\Delta E \approx 2\pi \frac{dE_T}{d\varphi}$ 1 turn

Number of twists $\frac{\varphi}{2\pi}$

Energy in twisting

Twist or loop?

Energy **Critical point:** Twisting will stop here 1 turn→ loop 1 turn 1 turn → twist

Number of twists $\frac{\varphi}{2\pi}$

Twist or loop?

Twisting instability condition

$$2\pi \frac{dE_T}{d\varphi} \geq F\Delta s + \Delta E_B$$

Critical torque

$$2\pi\tau \geq F\Delta s + \Delta E_B$$

Number of twists
$$\frac{arphi}{2\pi}$$

Reaching the torsional instability

Reaching the torsional instability

Reaching the torsional instability

Formations:

Spirals

Coils

20

Spirals vs. coils

Smaller curvature (ΔE_B) Greater impact on length (Δs)

Greater curvature Smaller impact on length

$$2\pi\tau \geq F\Delta s + \Delta E_B$$

Prevail under low tension

Prevail under high tension

Spirals

22

Coils

Points of investigation

Torque & Length during creation

Thickness and tension of rope

1. Torque and length during the twisting

- Depending on number of twists
- 2 materials:

Sisal

Polypropylene

Torque characteristics – Sisal rope

Torque characteristics - Sisal rope

Torque characteristics - Sisal rope

Torque characteristics – Sisal rope

Torque characteristics - Polypropylene

Length of rope during coil creation

- 1 twist \rightarrow 1 coil
- Each coil takes the same length of rope
 - => Approx. linear decrease in length with number of twists

Sudden jumps for sisal rope,
 continuous line for polypropylene

Coils effect on length

Coils effect on length

Coils effect on length

Conclusion part 1:

- Coils form 1 per twist
- ...after the critical torque is reached
- And result in linear decrease in length
- Discrete or continuous coil creation

2. Influence of tension and diameter

Changed:

tension (different weights)

Measured:

number of twists for the 1st coil

$$2\pi\tau \geq F\Delta s + \Delta E_B$$

Greater tension

→ coils need greater torque

→ will form later

Number of twists for the 1st coil

Changed:

diameter (different ropes)

Measured:

number of twists for the 1st coil

Prediction:

Scaling...

Scaling

Piece of rope: N twists needed

Twice as long: 2N twists needed

Half as thick:
Similar to twice as long
2N twists needed

Dependence on diameter: $N_{Twists} \propto$

$$N_{Twists} \propto rac{1}{diameter}$$

Twists vs. Diameter

- Polyamid
- Polypropylene

Twists vs. Diameter

Changed:

Diameter (different ropes)

Measured:

Critical torque

$$2\pi\tau \geq F\Delta s + \Delta E_B$$

Grows with diameter Grows with diameter

→ Greater torque needed

Max torque dep. on diameter

Conclusion

- Reason to form:
 - Energetically favorable for large twists
- Spirals vs. coil occurrence:
 - small vs. large tension

APPENDIX

Our Qualitative Hypothesis

1st option - Twist

Number of twist $\frac{\varphi}{2\pi}$

Formations

Sisal number of coils

Sisal torque

Sudden vs. continuous

Hypothesis:

Sisal – higher internal friction, delays coil creation Also visible on length!

Work and potential energy

sisal

Length

• Effect of coil creation on length.

