

Problem

 What methods are used to determine the elevation of the World's highest mountains? Suggest your own experimental method and determine the height of a mountain or of a hill of your choice.

Modern methods

- •GPS
- Barometric leveling
- Triangulation
- Radiolocation

Photogrammetry

$$\frac{h_1}{h_2} = \frac{h_1'}{h_2'}$$

The using of photogrammetry

Resolving disadvantages

- Standard and mountain have different scale
- Aberration

#3 Top secret

Advantages

- Understandable
- Simple set-up

Disadvantages

- Computer is required
- Lots of separate steps
- Aberration

#1 Photogrammetry > #2 Optical leveling

#3 Top secret

Optical leveling

#3 Top secret

Experiments #1 Photogrammetry #2 Optical leveling

#3 Top secret

Results

	Optical		Photogrammetry	
		18 steps	1 step	
		H = 8,1	8,14	
Building		e = 9%	e = 6%	
		26 steps	3 steps	
		14,4	14,37	
Hill		e = 1,5%	e = 4%	
			1 step	
			1,91	
Car		Not available	e = 4%	

Conclusions

- Two methods of height measurement are investigated and improved.
- Our own method proposed and confirmed.
- Photogrammetry isn't very effective method for determining hill.
- Methods used for measurements of hills in Belarus differ from the ones for the highest mountain peaks.
- Optic levelling appears to be the most precise method in Belarus

Thankyou forattention

Disadvantage of this method

•Low accuracy of angle between ground and lasers measurement

Angle dispersion

#1 Photogrammetry > #2 Optical leveling

#3 Barometric leveling

Two lasers

Our set-up for determining elevation Our set-up for dispersion determining

Barometric leveling

$$\Delta p = p_2 - p_1$$

$$\Delta h = 18400 (1 + \alpha t) \times \lg \left(\frac{p_1}{p_2}\right)$$

$$\alpha = 0.00366 \, ^{\circ}\text{C}^{-1}$$

#1 Photogrammetry > #2 Optical leveling

#3 Barometric leveling

Experimental part

 $p_1 = 735,25 \text{ mm}$ p_2 =734,75 mm t = 12°C h = 5.7m

#1 Photogrammetry > #2 Optical leveling

#3 Barometric leveling

Problem of this method

- •The pressure dependence on other factors
- Unideal equipment

Advantages

- Highly accurate
- Suits gentle slopes

Disadvantages

- Lots of separated steps
- 3 people are required
- Complicated set-up

Notes from our problem

- We have to use this method
- •We have to take account instrumental dispersion. (We can read this information in the passport of barometer).

We can't determine Everest

- The different humidity at the peak and at the of Bay of Bengal
- The different density of air
- •The different temperature and etc.

Advantages

Simple to using

Disadvantages

- Unideal equipment
- Method can't be applied to the high mountains and to the large distances.
- Difficult
 mathematics

Impossibility to use in Belarus

- •Elevations from 350 m give a very small time difference.
- •There a lot of trees, buildings etc.